Advanced Search+
M REDOLFI, N BLIN-SIMIAND, X DUTEN, S PASQUIERS, K HASSOUNI. Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(5): 55503-055503. DOI: 10.1088/2058-6272/ab01c7
Citation: M REDOLFI, N BLIN-SIMIAND, X DUTEN, S PASQUIERS, K HASSOUNI. Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(5): 55503-055503. DOI: 10.1088/2058-6272/ab01c7

Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure

More Information
  • Received Date: August 23, 2018
  • Gaseous naphthalene has been removed by air plasma generated by pulsed corona discharges at 100°C (LSPM) and dielectric barrier discharges (DBD) up to 250 °C (LPGP) in different reactors geometries. Naphthalene has been chosen as one of unburned hydrocarbon present in exhaust gas engine during the cold start of vehicles. The comparison between the different discharge geometries has been possible using the specific input energy (SIE) as relevant parameter for pollutant removal process control considering the differences in the electrical characteristics and the differences of gas flow. The best naphthalene degradation is obtained in the wire-to cylinder (WTC) corona discharge and the stem-to-cylinder DBD with an energy cost β respectively of 10 and 20 J L -1. The main by-products issues of the naphthalene oxidation are CO2 and CO reaching 45% in Multi-Pin-to-Plan corona discharge. We detected polyaromatic hydrocarbons in the gas phase (few ppm) and in the solid phase deposited in the reactors. The introduction of water in the discharges promotes the naphthalene degradation by OH-atom, which has better oxidising power than O-atom in dry air.
  • [1]
    Warnatz J, Maas U and Dibble R W 2010 Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Berlin: Springer)
    [2]
    Dellinger B et al 2008 Environ. Eng. Sci. 25 1107
    [3]
    Shie J L et al 2005 Appl. Catal. B: Environ. 58 289
    [4]
    Ka?par J, Fornasiero P and Hickey N 2003 Catal. Today 77 419
    [5]
    Holzer F, Roland U and Kopinke F D 2002 Appl. Catal. B: Environ. 38 163
    [6]
    Vandenbroucke A M et al 2011 J. Hazard. Mater. 195 30
    [7]
    Imada G 2011 IEEJ Trans. Electr. Electron. Eng. 6 88
    [8]
    Redolfi M et al 2009 Plasma Chem. Plasma Process. 29 173
    [9]
    Klett C et al 2012 Plasma Sources Sci. Technol. 21 045001
    [10]
    Hoeben W F L et al 2012 J. Phys. D: Appl. Phys. 45 055202
    [11]
    Satoh K, Matsuzawa T and Itoh H 2008 Thin Solid Films 516 4423
    [12]
    Redolfi M et al 2010 Process Saf. Environ. Prot. 88 207
    [13]
    Ogata A et al 2002 Appl. Catal. A: Gen. 236 9
    [14]
    Blin-Simiand N et al 2008 Plasma Chem. Plasma Process. 28 429
    [15]
    Blin-Simiand N, Pasquiers S and Magne L 2016 J. Phys. D: Appl. Phys. 49 195202
    [16]
    Koeta O et al 2012 Plasma Chem. Plasma Process. 32 991
    [17]
    Van Durme J et al 2007 Chemosphere 68 1821
    [18]
    Demidyuk V and Whitehead J C 2007 Plasma Chem. Plasma Process. 27 85
    [19]
    Machala Z et al 2005 Plasma Process. Polym. 2 152
    [20]
    Holzer F, Kopinke F D and Roland U 2005 Plasma Chem. Plasma Process. 25 595
    [21]
    Du C M et al 2006 Plasma Chem. Plasma Process. 26 517
    [22]
    Yu L et al 2010 J. Hazard. Mater. 180 449
    [23]
    Yu L et al 2010 J. Phys. Chem. A 114 360
    [24]
    Abdelaziz A A et al 2013 J. Hazard. Mater. 246-247 26
    [25]
    Abdelaziz A A et al 2012 J. Phys. D: Appl. Phys. 45 115201
    [26]
    Nair S A et al 2003 Fuel Process. Technol. 84 161
    [27]
    Wu Z L et al 2017 IEEE Trans. Plasma Sci. 45 154
    [28]
    Bastien F and Marode E 1979 J. Phys. D: Appl. Phys. 12 249
    [29]
    Van Veldhuizen E M and Rutgers W R 2003 J. Phys. D: Appl. Phys. 36 2692
    [30]
    Yan K et al 2001 Plasma Chem. Plasma Process. 21 107
    [31]
    Guo R K, Kitamura N and Tazuke S 1990 J. Phys. Chem. 94 1404
    [32]
    Brubaker W W and Hites R A 1998 J. Phys. Chem. A 102 915
    [33]
    Atkinson R 1986 Chem. Rev. 86 69
    [34]
    Fouad L and Elhazek S 1995 J. Electrost. 35 21
    [35]
    Falkenstein Z and Coogan J J 1997 J. Phys. D: Appl. Phys. 30 817
    [36]
    Abdelaziz A A, Ishijima T and Seto T 2018 Phys. Plasmas 25 043512
    [37]
    Sugasawa M, Terasawa T and Futamura S 2010 IEEE Trans. Ind. Appl. 46 1692
    [38]
    Sugasawa M, Terasawa T and Futamura S 2010 J. Electrost. 68 212
    [39]
    Kim J C 2002 Radiat. Phys. Chem. 65 429
    [40]
    Atkinson R et al 1997 J. Phys. Chem. Ref. Data 26 1329
  • Related Articles

    [1]Jiajian ZHU, Le LI, Yifu TIAN, Minggang WAN, Mingbo SUN. Mutual effects between a gliding arc discharge and a premixed flame[J]. Plasma Science and Technology, 2024, 26(12): 125505. DOI: 10.1088/2058-6272/ad8120
    [2]Xiangmei LIU, Xiaotian DONG, Hongying LI, Shuxia ZHAO. The effects of dilution gas on nanoparticle growth in atmospheric-pressure acetylene microdischarges[J]. Plasma Science and Technology, 2022, 24(10): 105503. DOI: 10.1088/2058-6272/ac73e7
    [3]Xiaolong WANG (王晓龙), Zhenyu TAN (谭震宇), Jiaqi HAN (韩佳奇), Xiaotong LI (李晓彤). Numerical investigation on electron effects in the mass transfer of the plasma species in aqueous solution[J]. Plasma Science and Technology, 2020, 22(11): 115504. DOI: 10.1088/2058-6272/abaaa4
    [4]Han XU (徐晗), Chen CHEN (陈晨), Dingxin LIU (刘定新), Weitao WANG (王伟涛), Wenjie XIA (夏文杰), Zhijie LIU (刘志杰), Li GUO (郭莉), M G KONG (孔刚玉). The effect of gas additives on reactive species and bacterial inactivation by a helium plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115502. DOI: 10.1088/2058-6272/ab3938
    [5]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [6]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [7]YAN Ying (燕颖), CAI Kaiyong (蔡开勇), YANG Weihu (杨维虎), LIU Peng (刘鹏). Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors[J]. Plasma Science and Technology, 2013, 15(7): 648-653. DOI: 10.1088/1009-0630/15/7/09
    [8]ZHANG Peng (张鹏), WANG Jun (王俊), SUN Yang (孙阳), DING Zejun (丁泽军). Charging Effect in Plasma Etching Mask of Hole Array[J]. Plasma Science and Technology, 2013, 15(6): 570-576. DOI: 10.1088/1009-0630/15/6/15
    [9]LIU Hongxia (刘红霞), LIU Yun (刘云). Investigation on the Effects and Mechanisms of PTFE Surface Modification by Low Pressure Plasma?[J]. Plasma Science and Technology, 2012, 14(8): 728-734. DOI: 10.1088/1009-0630/14/8/09
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
  • Cited by

    Periodical cited type(9)

    1. Yan, R., Wu, B., Gao, C. et al. Selective control of Poiseuille Rayleigh Bénard flows instabilities by spanwise dielectric-barrier-discharge plasma actuation. Physics of Fluids, 2023, 35(12): 127123. DOI:10.1063/5.0177318
    2. Zheng, B., Liu, Y., Yu, M. et al. Flow control performance evaluation of a tri-electrode sliding discharge plasma actuator. Chinese Physics B, 2023, 32(9): 095203. DOI:10.1088/1674-1056/acae76
    3. Zhang, Y., Gao, C., Wu, B. et al. Dynamic stall flow control with multistage dielectric-barrier discharge actuation under light stall conditions. Physics of Plasmas, 2023, 30(8): 083513. DOI:10.1063/5.0158088
    4. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    5. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    6. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    7. Xu, Z., Wu, B., Gao, C. et al. Numerical simulation of dynamic stall flow control using a multi-dielectric barrier discharge plasma actuation strategy. Physics of Plasmas, 2022, 29(10): 103503. DOI:10.1063/5.0107530
    8. Xue, M., Ni, Z., Gao, C. et al. Deflected Synthetic Jet due to Vortices Induced by a Tri-Electrode Plasma Actuator. AIAA Journal, 2022, 60(6): 3695-3706. DOI:10.2514/1.J061223
    9. Jiang, H., Li, G., Liu, H. et al. Numerical verification of the two-spike-current behavior in the initial stage of plasma formation in a pulsed surface dielectric barrier discharge. Journal of Physics D: Applied Physics, 2021, 54(34): 345201. DOI:10.1088/1361-6463/ac0705

    Other cited types(0)

Catalog

    Article views (141) PDF downloads (190) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return