Advanced Search+
M REDOLFI, N BLIN-SIMIAND, X DUTEN, S PASQUIERS, K HASSOUNI. Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(5): 55503-055503. DOI: 10.1088/2058-6272/ab01c7
Citation: M REDOLFI, N BLIN-SIMIAND, X DUTEN, S PASQUIERS, K HASSOUNI. Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(5): 55503-055503. DOI: 10.1088/2058-6272/ab01c7

Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure

More Information
  • Received Date: August 23, 2018
  • Gaseous naphthalene has been removed by air plasma generated by pulsed corona discharges at 100°C (LSPM) and dielectric barrier discharges (DBD) up to 250 °C (LPGP) in different reactors geometries. Naphthalene has been chosen as one of unburned hydrocarbon present in exhaust gas engine during the cold start of vehicles. The comparison between the different discharge geometries has been possible using the specific input energy (SIE) as relevant parameter for pollutant removal process control considering the differences in the electrical characteristics and the differences of gas flow. The best naphthalene degradation is obtained in the wire-to cylinder (WTC) corona discharge and the stem-to-cylinder DBD with an energy cost β respectively of 10 and 20 J L -1. The main by-products issues of the naphthalene oxidation are CO2 and CO reaching 45% in Multi-Pin-to-Plan corona discharge. We detected polyaromatic hydrocarbons in the gas phase (few ppm) and in the solid phase deposited in the reactors. The introduction of water in the discharges promotes the naphthalene degradation by OH-atom, which has better oxidising power than O-atom in dry air.
  • [1]
    Warnatz J, Maas U and Dibble R W 2010 Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Berlin: Springer)
    [2]
    Dellinger B et al 2008 Environ. Eng. Sci. 25 1107
    [3]
    Shie J L et al 2005 Appl. Catal. B: Environ. 58 289
    [4]
    Ka?par J, Fornasiero P and Hickey N 2003 Catal. Today 77 419
    [5]
    Holzer F, Roland U and Kopinke F D 2002 Appl. Catal. B: Environ. 38 163
    [6]
    Vandenbroucke A M et al 2011 J. Hazard. Mater. 195 30
    [7]
    Imada G 2011 IEEJ Trans. Electr. Electron. Eng. 6 88
    [8]
    Redolfi M et al 2009 Plasma Chem. Plasma Process. 29 173
    [9]
    Klett C et al 2012 Plasma Sources Sci. Technol. 21 045001
    [10]
    Hoeben W F L et al 2012 J. Phys. D: Appl. Phys. 45 055202
    [11]
    Satoh K, Matsuzawa T and Itoh H 2008 Thin Solid Films 516 4423
    [12]
    Redolfi M et al 2010 Process Saf. Environ. Prot. 88 207
    [13]
    Ogata A et al 2002 Appl. Catal. A: Gen. 236 9
    [14]
    Blin-Simiand N et al 2008 Plasma Chem. Plasma Process. 28 429
    [15]
    Blin-Simiand N, Pasquiers S and Magne L 2016 J. Phys. D: Appl. Phys. 49 195202
    [16]
    Koeta O et al 2012 Plasma Chem. Plasma Process. 32 991
    [17]
    Van Durme J et al 2007 Chemosphere 68 1821
    [18]
    Demidyuk V and Whitehead J C 2007 Plasma Chem. Plasma Process. 27 85
    [19]
    Machala Z et al 2005 Plasma Process. Polym. 2 152
    [20]
    Holzer F, Kopinke F D and Roland U 2005 Plasma Chem. Plasma Process. 25 595
    [21]
    Du C M et al 2006 Plasma Chem. Plasma Process. 26 517
    [22]
    Yu L et al 2010 J. Hazard. Mater. 180 449
    [23]
    Yu L et al 2010 J. Phys. Chem. A 114 360
    [24]
    Abdelaziz A A et al 2013 J. Hazard. Mater. 246-247 26
    [25]
    Abdelaziz A A et al 2012 J. Phys. D: Appl. Phys. 45 115201
    [26]
    Nair S A et al 2003 Fuel Process. Technol. 84 161
    [27]
    Wu Z L et al 2017 IEEE Trans. Plasma Sci. 45 154
    [28]
    Bastien F and Marode E 1979 J. Phys. D: Appl. Phys. 12 249
    [29]
    Van Veldhuizen E M and Rutgers W R 2003 J. Phys. D: Appl. Phys. 36 2692
    [30]
    Yan K et al 2001 Plasma Chem. Plasma Process. 21 107
    [31]
    Guo R K, Kitamura N and Tazuke S 1990 J. Phys. Chem. 94 1404
    [32]
    Brubaker W W and Hites R A 1998 J. Phys. Chem. A 102 915
    [33]
    Atkinson R 1986 Chem. Rev. 86 69
    [34]
    Fouad L and Elhazek S 1995 J. Electrost. 35 21
    [35]
    Falkenstein Z and Coogan J J 1997 J. Phys. D: Appl. Phys. 30 817
    [36]
    Abdelaziz A A, Ishijima T and Seto T 2018 Phys. Plasmas 25 043512
    [37]
    Sugasawa M, Terasawa T and Futamura S 2010 IEEE Trans. Ind. Appl. 46 1692
    [38]
    Sugasawa M, Terasawa T and Futamura S 2010 J. Electrost. 68 212
    [39]
    Kim J C 2002 Radiat. Phys. Chem. 65 429
    [40]
    Atkinson R et al 1997 J. Phys. Chem. Ref. Data 26 1329
  • Related Articles

    [1]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [2]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [3]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [4]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [5]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [6]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [7]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08
    [8]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.
    [9]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.
    [10]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.
  • Cited by

    Periodical cited type(6)

    1. Huang, C.-L., Liao, T.-Y., He, Y.-T. et al. Characterization of OH species in kHz air/H2O atmospheric pressure dielectric barrier discharges. Plasma Sources Science and Technology, 2024, 33(6): 065005. DOI:10.1088/1361-6595/ad4ddd
    2. Sima, J., Wang, J., Song, J. et al. Dielectric barrier discharge plasma for the remediation of microplastic-contaminated soil from landfill. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.137815
    3. Li, J., Zheng, Z., Cui, X. et al. Decomposition of Naphthalene by Dielectric Barrier Discharge in Conjunction with a Catalyst at Atmospheric Pressure. Catalysts, 2022, 12(7): 740. DOI:10.3390/catal12070740
    4. Cimerman, R., Cíbiková, M., Satrapinskyy, L. et al. The effect of packing material properties on tars removal by plasma catalysis. Catalysts, 2020, 10(12): 1-22. DOI:10.3390/catal10121476
    5. Gomez-Rueda, Y., Zaini, I.N., Yang, W. et al. Thermal tar cracking enhanced by cold plasma – A study of naphthalene as tar surrogate. Energy Conversion and Management, 2020. DOI:10.1016/j.enconman.2020.112540
    6. Rostami, R., Moussavi, G., Darbari, S. et al. Enhanced removal of benzene in non-Thermal plasma with ozonation, flow recycling, and flow recirculation. Plasma Science and Technology, 2019, 21(9): 095501. DOI:10.1088/2058-6272/ab2198

    Other cited types(0)

Catalog

    Article views (141) PDF downloads (190) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return