Citation: | M REDOLFI, N BLIN-SIMIAND, X DUTEN, S PASQUIERS, K HASSOUNI. Naphthalene oxidation by different non-thermal electrical discharges at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(5): 55503-055503. DOI: 10.1088/2058-6272/ab01c7 |
[1] |
Warnatz J, Maas U and Dibble R W 2010 Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation (Berlin: Springer)
|
[2] |
Dellinger B et al 2008 Environ. Eng. Sci. 25 1107
|
[3] |
Shie J L et al 2005 Appl. Catal. B: Environ. 58 289
|
[4] |
Ka?par J, Fornasiero P and Hickey N 2003 Catal. Today 77 419
|
[5] |
Holzer F, Roland U and Kopinke F D 2002 Appl. Catal. B: Environ. 38 163
|
[6] |
Vandenbroucke A M et al 2011 J. Hazard. Mater. 195 30
|
[7] |
Imada G 2011 IEEJ Trans. Electr. Electron. Eng. 6 88
|
[8] |
Redolfi M et al 2009 Plasma Chem. Plasma Process. 29 173
|
[9] |
Klett C et al 2012 Plasma Sources Sci. Technol. 21 045001
|
[10] |
Hoeben W F L et al 2012 J. Phys. D: Appl. Phys. 45 055202
|
[11] |
Satoh K, Matsuzawa T and Itoh H 2008 Thin Solid Films 516 4423
|
[12] |
Redolfi M et al 2010 Process Saf. Environ. Prot. 88 207
|
[13] |
Ogata A et al 2002 Appl. Catal. A: Gen. 236 9
|
[14] |
Blin-Simiand N et al 2008 Plasma Chem. Plasma Process. 28 429
|
[15] |
Blin-Simiand N, Pasquiers S and Magne L 2016 J. Phys. D: Appl. Phys. 49 195202
|
[16] |
Koeta O et al 2012 Plasma Chem. Plasma Process. 32 991
|
[17] |
Van Durme J et al 2007 Chemosphere 68 1821
|
[18] |
Demidyuk V and Whitehead J C 2007 Plasma Chem. Plasma Process. 27 85
|
[19] |
Machala Z et al 2005 Plasma Process. Polym. 2 152
|
[20] |
Holzer F, Kopinke F D and Roland U 2005 Plasma Chem. Plasma Process. 25 595
|
[21] |
Du C M et al 2006 Plasma Chem. Plasma Process. 26 517
|
[22] |
Yu L et al 2010 J. Hazard. Mater. 180 449
|
[23] |
Yu L et al 2010 J. Phys. Chem. A 114 360
|
[24] |
Abdelaziz A A et al 2013 J. Hazard. Mater. 246-247 26
|
[25] |
Abdelaziz A A et al 2012 J. Phys. D: Appl. Phys. 45 115201
|
[26] |
Nair S A et al 2003 Fuel Process. Technol. 84 161
|
[27] |
Wu Z L et al 2017 IEEE Trans. Plasma Sci. 45 154
|
[28] |
Bastien F and Marode E 1979 J. Phys. D: Appl. Phys. 12 249
|
[29] |
Van Veldhuizen E M and Rutgers W R 2003 J. Phys. D: Appl. Phys. 36 2692
|
[30] |
Yan K et al 2001 Plasma Chem. Plasma Process. 21 107
|
[31] |
Guo R K, Kitamura N and Tazuke S 1990 J. Phys. Chem. 94 1404
|
[32] |
Brubaker W W and Hites R A 1998 J. Phys. Chem. A 102 915
|
[33] |
Atkinson R 1986 Chem. Rev. 86 69
|
[34] |
Fouad L and Elhazek S 1995 J. Electrost. 35 21
|
[35] |
Falkenstein Z and Coogan J J 1997 J. Phys. D: Appl. Phys. 30 817
|
[36] |
Abdelaziz A A, Ishijima T and Seto T 2018 Phys. Plasmas 25 043512
|
[37] |
Sugasawa M, Terasawa T and Futamura S 2010 IEEE Trans. Ind. Appl. 46 1692
|
[38] |
Sugasawa M, Terasawa T and Futamura S 2010 J. Electrost. 68 212
|
[39] |
Kim J C 2002 Radiat. Phys. Chem. 65 429
|
[40] |
Atkinson R et al 1997 J. Phys. Chem. Ref. Data 26 1329
|
[1] | Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301 |
[2] | Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e |
[3] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[4] | Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6 |
[5] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[6] | DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09 |
[7] | TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08 |
[8] | WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729. |
[9] | FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582. |
[10] | Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87. |
1. | Huang, C.-L., Liao, T.-Y., He, Y.-T. et al. Characterization of OH species in kHz air/H2O atmospheric pressure dielectric barrier discharges. Plasma Sources Science and Technology, 2024, 33(6): 065005. DOI:10.1088/1361-6595/ad4ddd |
2. | Sima, J., Wang, J., Song, J. et al. Dielectric barrier discharge plasma for the remediation of microplastic-contaminated soil from landfill. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.137815 |
3. | Li, J., Zheng, Z., Cui, X. et al. Decomposition of Naphthalene by Dielectric Barrier Discharge in Conjunction with a Catalyst at Atmospheric Pressure. Catalysts, 2022, 12(7): 740. DOI:10.3390/catal12070740 |
4. | Cimerman, R., Cíbiková, M., Satrapinskyy, L. et al. The effect of packing material properties on tars removal by plasma catalysis. Catalysts, 2020, 10(12): 1-22. DOI:10.3390/catal10121476 |
5. | Gomez-Rueda, Y., Zaini, I.N., Yang, W. et al. Thermal tar cracking enhanced by cold plasma – A study of naphthalene as tar surrogate. Energy Conversion and Management, 2020. DOI:10.1016/j.enconman.2020.112540 |
6. | Rostami, R., Moussavi, G., Darbari, S. et al. Enhanced removal of benzene in non-Thermal plasma with ozonation, flow recycling, and flow recirculation. Plasma Science and Technology, 2019, 21(9): 095501. DOI:10.1088/2058-6272/ab2198 |