Advanced Search+
Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
Citation: Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5

Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11372352, 51776222) and the China Postdoctoral Science Foundation (Nos. 2017T100772, 2016M590972).
More Information
  • Received Date: August 15, 2018
  • Development of magnetohydrodynamic acceleration technology is expected to improve wind tunnel simulation capability and testing capability. The underlying premise is to produce uniform and stable plasma in supersonic air flow, and gas discharge is an effective way to achieve this. A nanosecond pulsed discharge experimental system under supersonic conditions was established, and a pin-to-plate nanosecond pulsed discharge experiment in Mach 2 air flow was performed to verify that the proposed method produced uniform and stable plasma under supersonic conditions. The results show that the discharge under supersonic conditions was stable overall, but uniformity was not as good as that under static conditions. Increasing the number of pins improved discharge uniformity, but reduced discharge intensity and hence plasma density. Under multi-pin conditions at 1000 Hz, the discharge was almost completely corona discharge, with the main current component being the displacement current, which was smaller than that under static conditions.
  • [1]
    Li Y W et al 2017 Adv. Mech. 47 201713 (in Chinese)
    [2]
    Nishihara M et al 2006 Phys. Fluids 18 086101
    [3]
    Vasil’eva R V et al 2009 Tech. Phys. 54 829
    [4]
    Tang J F et al 2014 IEEE Trans. Plasma Sci. 42 753
    [5]
    Bobashev S V et al 2015 Tech. Phys. Lett. 41 1107
    [6]
    Murray R C et al 2003 Nonequilibrium ionization techniques for MHD power extraction in high-speed flows Proc. 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno: AIAA) 2003
    [7]
    Murray R C et al 2003 Investigation of a Mach 3 cold air MHD channel Proc. 34th AIAA Plasmadynamics and Lasers Conf., Fluid Dynamics and Co-located Conf. (Orlando: AIEE) 2003
    [8]
    Murray R C et al 2004 Observation of MHD effects with non- equilibrium ionization in cold supersonic air flows Proc. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno: AIAA) 2004
    [9]
    Macheret S O et al 2004 RDHWT/MARIAH II MHD modeling and experiments review Proc. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conf., Fluid Dynamics and Co-located Conf. (Portland: AIAA) 2004
    [10]
    Murray R C et al 2006 AIAA J. 44 119
    [11]
    Bobashev S V et al 2006 Air plasma produced by gas discharge in supersonic MHD channel Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno: AIAA) 2006
    [12]
    Yang P Y et al 2014 Acta Aeronaut. Astronaut. Sin. 35 1539 (in Chinese)
    [13]
    Zhang Y et al 2013 Sci. Technol. Eng. 13 10435 (in Chinese)
    [14]
    Yang P Y et al 2016 Chin. J. Aeronaut. 29 855
    [15]
    Udagawa K et al 2008 Experimental study of a fast ionization wave discharge at high pulse repetition rates Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings (Reno: AIAA) 2008
    [16]
    Pai D Z, Lacoste D A and Laux C O 2010 Appl. Phys. 107 093303
    [17]
    Shao T et al 2004 High Volt. Eng. 30 40 (in Chinese)
    [18]
    Zhang C, Shao T and Yan P 2014 Chin. Sci. Bull. 59 1919 (in Chinese)
    [19]
    McGowen R et al 2016 Pulsed-DC plasma actuator characteristics and application in compressor stall control Proc. 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (San Diego: AIAA) 2016
    [20]
    Gu J W et al 2016 Plasma Sci. Technol. 18 230
    [21]
    Li L et al 2014 J. Appl. Phys. 115 023301
    [22]
    Martin T H 1989 An empirical formula for gas switch breakdown delay Proc. 7th IEEE Pulsed Power Conf. (Monterey, CA: IEEE) 1989
    [23]
    Niu Z T et al 2015 Acta Phys. Sin. 64 195204 (in Chinese)
    [24]
    Ershov A P et al 2004 High Temp. 42 516
    [25]
    He K et al 2015 Proc. CSEE 35 4254 (in Chinese)
    [26]
    Takashima K et al 2011 Plasma Sources Sci. Technol. 20 055009
    [27]
    Shao T et al 2013 J. Appl. Phys. 113 093301
    [28]
    Shao T and Yan P 2015 Atmospheric Gas Discharges and its Plasma Applications (Beijing: Science Press) (in Chinese)
  • Related Articles

    [1]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [2]Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8
    [3]ihao TIE (铁维昊), Cui MENG (孟萃), Yuting ZHANG (张雨婷), Zirang YAN (闫自让), Qiaogen ZHANG (张乔根). Analysis on discharge process of a plasma-jet trigered gas spark switch[J]. Plasma Science and Technology, 2018, 20(1): 14009-014009. DOI: 10.1088/2058-6272/aa8cbe
    [4]WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14
    [5]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [6]HUANG Zhongde(黄忠德), YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), QIU Aici(邱爱慈). Experimental Research of ZnO Surface Flashover Trigger Device of Pseudo-Spark Switch[J]. Plasma Science and Technology, 2014, 16(5): 506-511. DOI: 10.1088/1009-0630/16/5/11
    [7]SANG Ziru(桑子儒), LI Feng(李锋), JIANG Xiao(江晓), JIN Ge(金革). A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments[J]. Plasma Science and Technology, 2014, 16(4): 400-405. DOI: 10.1088/1009-0630/16/4/18
    [8]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [9]LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18
    [10]SHANG Chao, LIANG Lin, YU Yuehui, WU Yongjun, LI Hailiang. Experimental Study of Reversely Switched Dynistor Discharge Based on Gap Breakdown Load[J]. Plasma Science and Technology, 2011, 13(1): 121-124.

Catalog

    Article views (170) PDF downloads (229) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return