Advanced Search+
Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6
Citation: Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6

Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge

Funds: We acknowledge the support by National Natural Science Foundation of China (Nos. 11674128, and 11674124); Jilin Province Scientific and Technological Development Program, China (No. 20170101063JC).
More Information
  • Received Date: January 24, 2018
  • The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS. It works under laser-plasma triggered spark discharge mode, and shows its ability to enhance spectral emission intensity. This work uses a femtosecond laser as the light source, since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser, meanwhile, the study on femtosecond LIBS with spark discharge is rare. Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies. The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone. And, the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy. In addition, at low laser energy, there was an obvious delay on the discharge time compared with high laser energy, and the discharge time with positive voltage was different from that with negative voltage.
  • [1]
    Song K et al 1997 Appl. Spectrosc. Rev. 32 183
    [2]
    Rusak D A et al 1997 Crit. Rev. Anal. Chem. 27 257
    [3]
    Shen X K et al 2007 Appl. Phys. Lett. 91 081501
    [4]
    Wang Z et al 2015 Plasma Sci. Technol. 17 617
    [5]
    Wang J et al 2015 Plasma Sci. Technol. 17 649
    [6]
    Liu P et al 2015 Plasma Sci. Technol. 17 687
    [7]
    Li X et al 2015 Plasma Sci. Technol. 17 621
    [8]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [9]
    Choi S J et al 2015 Opt. Express 23 6336
    [10]
    Khumaeni A et al 2013 Opt. Express 21 29755
    [11]
    Sattmann R et al 1995 J. Phys. D: Appl. Phys. 28 2181
    [12]
    Zhang D et al 2017 Opt. Laser Technol. 96 117
    [13]
    Popov A M et al 2009 J. Anal. At. Spectrom. 24 602
    [14]
    Dong D et al 2017 Chem. Commun. 53 4546
    [15]
    Wu D et al 2016 Plasma Sci. Technol. 18 364
    [16]
    Vega C G D et al 2016 Spectrochim. Acta B 121 47
    [17]
    Harilal S S et al 2014 Appl. Phys. A 117 319
    [18]
    Zorov N B et al 2010 Spectrochim. Acta B 65 642
    [19]
    Li L et al 2011 J. Anal. At. Spectrom. 26 2274
    [20]
    Wu D et al 2018 Appl. Spectrosc. 72 225
    [21]
    Wang Y et al 2018 Spectrochim. Acta B 150 9
    [22]
    Liu P et al 2018 Plasma Chem. Plasma Process. 38 803
    [23]
    Li X et al 2012 Opt. Commun. 285 54
    [24]
    Zhou W et al 2012 Appl. Opt. 51 B42
    [25]
    He X et al 2018 Spectrochim. Acta B 141 34
    [26]
    Wang X et al 2018 Opt. Express 26 13973
    [27]
    Chen Y et al 2010 J. Anal. At. Spectrom. 25 1969
    [28]
    Zhou W et al 2013 J. Anal. At. Spectrom. 28 702
    [29]
    Li K et al 2010 J. Anal. At. Spectrom. 25 1475
    [30]
    Hou Z et al 2014 Opt. Express 22 12909
    [31]
    Nassef O A et al 2005 Spectrochim. Acta B 60 1564
    [32]
    Hassanimatin M M et al 2018 Phys. Plasmas 25 053302
    [33]
    Qi H et al 2014 J. Anal. At. Spectrom. 29 1105
    [34]
    Labutin T A et al 2016 J. Anal. At. Spectrom. 31 90
    [35]
    Yang D-P et al 2017 Acta Phys. Sin. 66 115201
    [36]
    Hou H et al 2015 Spectrochim. Acta B 113 113
    [37]
    Li S et al 2015 Appl. Surf. Sci. 355 681
    [38]
    Sundaram S K et al 2002 Nat. Mater. 1 217
    [39]
    Miloshevsky A et al 2014 Phys. Plasmas 21 043111
    [40]
    He X et al 2018 J. Anal. At. Spectrom. 33 2203
    [41]
    Wang T et al 2015 Phys. Plasmas 22 033106
    [42]
    Li S C et al 2015 Nucl. Instrum. Methods Phys. Res. B 342 300
    [43]
    Wang X et al 2017 Phys. Plasmas 24 103305
    [44]
    Zhou W et al 2011 Opt. Lett. 36 2961
    [45]
    Robledo-Martinez A et al 2018 Spectrochim. Acta B 144 7
    [46]
    Bol’shakov A A et al 2017 J. Anal. At. Spectrom. 32 657
    [47]
    Guo J et al 2014 Appl. Phys. A 117 1367
    [48]
    Chen A et al 2013 Thin Solid Films 529 209
    [49]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
  • Related Articles

    [1]Jiacheng LI (李嘉诚), Zhongzheng HUANG (黄钟政), Dawei LIU (刘大伟), Kuanlei ZHENG (郑宽磊). The enhanced aerosol deposition by bipolar corona discharge arrays[J]. Plasma Science and Technology, 2021, 23(6): 64010-064010. DOI: 10.1088/2058-6272/abf6ad
    [2]Adem ACIR, Esref BAYSAL. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine[J]. Plasma Science and Technology, 2018, 20(7): 75601-075601. DOI: 10.1088/2058-6272/aab3c4
    [3]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [4]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [5]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [6]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [7]WU Xingwei(吴兴伟), LI Cong(李聪), ZHANG Chenfei(张辰飞), DING Hongbin(丁洪斌). High-Sensitivity In-Situ Diagnosis of NO 2 Production and Removal in DBD Using Cavity Ring-Down Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 142-148. DOI: 10.1088/1009-0630/16/2/10
    [8]Kenji SAITO, Ryuhei KUMAZAWA, Tetsuo SEKI, Hiroshi KASAHARA, Goro NOMURA, et al. Measurement of Ion Cyclotron Emissions by Using High-Frequency Magnetic Probes in the LHD[J]. Plasma Science and Technology, 2013, 15(3): 209-212. DOI: 10.1088/1009-0630/15/3/03
    [9]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.
    [10]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.

Catalog

    Article views (160) PDF downloads (212) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return