Advanced Search+
Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6
Citation: Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6

Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge

Funds: We acknowledge the support by National Natural Science Foundation of China (Nos. 11674128, and 11674124); Jilin Province Scientific and Technological Development Program, China (No. 20170101063JC).
More Information
  • Received Date: January 24, 2018
  • The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS. It works under laser-plasma triggered spark discharge mode, and shows its ability to enhance spectral emission intensity. This work uses a femtosecond laser as the light source, since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser, meanwhile, the study on femtosecond LIBS with spark discharge is rare. Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies. The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone. And, the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy. In addition, at low laser energy, there was an obvious delay on the discharge time compared with high laser energy, and the discharge time with positive voltage was different from that with negative voltage.
  • [1]
    Song K et al 1997 Appl. Spectrosc. Rev. 32 183
    [2]
    Rusak D A et al 1997 Crit. Rev. Anal. Chem. 27 257
    [3]
    Shen X K et al 2007 Appl. Phys. Lett. 91 081501
    [4]
    Wang Z et al 2015 Plasma Sci. Technol. 17 617
    [5]
    Wang J et al 2015 Plasma Sci. Technol. 17 649
    [6]
    Liu P et al 2015 Plasma Sci. Technol. 17 687
    [7]
    Li X et al 2015 Plasma Sci. Technol. 17 621
    [8]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [9]
    Choi S J et al 2015 Opt. Express 23 6336
    [10]
    Khumaeni A et al 2013 Opt. Express 21 29755
    [11]
    Sattmann R et al 1995 J. Phys. D: Appl. Phys. 28 2181
    [12]
    Zhang D et al 2017 Opt. Laser Technol. 96 117
    [13]
    Popov A M et al 2009 J. Anal. At. Spectrom. 24 602
    [14]
    Dong D et al 2017 Chem. Commun. 53 4546
    [15]
    Wu D et al 2016 Plasma Sci. Technol. 18 364
    [16]
    Vega C G D et al 2016 Spectrochim. Acta B 121 47
    [17]
    Harilal S S et al 2014 Appl. Phys. A 117 319
    [18]
    Zorov N B et al 2010 Spectrochim. Acta B 65 642
    [19]
    Li L et al 2011 J. Anal. At. Spectrom. 26 2274
    [20]
    Wu D et al 2018 Appl. Spectrosc. 72 225
    [21]
    Wang Y et al 2018 Spectrochim. Acta B 150 9
    [22]
    Liu P et al 2018 Plasma Chem. Plasma Process. 38 803
    [23]
    Li X et al 2012 Opt. Commun. 285 54
    [24]
    Zhou W et al 2012 Appl. Opt. 51 B42
    [25]
    He X et al 2018 Spectrochim. Acta B 141 34
    [26]
    Wang X et al 2018 Opt. Express 26 13973
    [27]
    Chen Y et al 2010 J. Anal. At. Spectrom. 25 1969
    [28]
    Zhou W et al 2013 J. Anal. At. Spectrom. 28 702
    [29]
    Li K et al 2010 J. Anal. At. Spectrom. 25 1475
    [30]
    Hou Z et al 2014 Opt. Express 22 12909
    [31]
    Nassef O A et al 2005 Spectrochim. Acta B 60 1564
    [32]
    Hassanimatin M M et al 2018 Phys. Plasmas 25 053302
    [33]
    Qi H et al 2014 J. Anal. At. Spectrom. 29 1105
    [34]
    Labutin T A et al 2016 J. Anal. At. Spectrom. 31 90
    [35]
    Yang D-P et al 2017 Acta Phys. Sin. 66 115201
    [36]
    Hou H et al 2015 Spectrochim. Acta B 113 113
    [37]
    Li S et al 2015 Appl. Surf. Sci. 355 681
    [38]
    Sundaram S K et al 2002 Nat. Mater. 1 217
    [39]
    Miloshevsky A et al 2014 Phys. Plasmas 21 043111
    [40]
    He X et al 2018 J. Anal. At. Spectrom. 33 2203
    [41]
    Wang T et al 2015 Phys. Plasmas 22 033106
    [42]
    Li S C et al 2015 Nucl. Instrum. Methods Phys. Res. B 342 300
    [43]
    Wang X et al 2017 Phys. Plasmas 24 103305
    [44]
    Zhou W et al 2011 Opt. Lett. 36 2961
    [45]
    Robledo-Martinez A et al 2018 Spectrochim. Acta B 144 7
    [46]
    Bol’shakov A A et al 2017 J. Anal. At. Spectrom. 32 657
    [47]
    Guo J et al 2014 Appl. Phys. A 117 1367
    [48]
    Chen A et al 2013 Thin Solid Films 529 209
    [49]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
  • Related Articles

    [1]Jinjia GUO (郭金家), Al-Salihi MAHMOUD, Nan LI (李楠), Jiaojian SONG (宋矫健), Ronger ZHENG (郑荣儿). Study of pressure effects on ocean in-situ detection using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34022-034022. DOI: 10.1088/2058-6272/aaf091
    [2]Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
    [3]Ying WANG (王莹), Anmin CHEN (陈安民), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Laizhi SUI (隋来志), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Enhancement of optical emission generated from femtosecond double-pulse laser-induced glass plasma at different sample temperatures in air[J]. Plasma Science and Technology, 2019, 21(3): 34013-034013. DOI: 10.1088/2058-6272/aaefa1
    [4]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [5]Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d
    [6]WANG Ying (王莹), CHEN Anmin (陈安民), LI Suyu (李苏宇), SUI Laizhi (隋来志), LIU Dunli (刘敦利), LI Shuchang (李舒畅), LI He (李贺), JIANG Yuanfei (姜远飞), JIN Mingxing (金明星). Re-Heating Effect on the Enhancement of Plasma Emission Generated from Fe Under Femtosecond Double-Pulse Laser Irradiation[J]. Plasma Science and Technology, 2016, 18(12): 1192-1197. DOI: 10.1088/1009-0630/18/12/09
    [7]LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05
    [8]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [9]Sergey S. GOLIK, Alexey A. ILYIN, Michael Yu. BABIY, Yulia S. BIRYUKOVA, Vladimir V. LISITSA, Oleg A. BUKIN. Determination of Iron in Water Solution by Time-Resolved Femtosecond Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2015, 17(11): 975-978. DOI: 10.1088/1009-0630/17/11/16
    [10]M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11
  • Cited by

    Periodical cited type(18)

    1. Liu, J., Wang, J., Li, X. et al. Quantitative analysis and identification of magnesium alloys using fs-LA-SIBS combined with machine learning methods. RSC Advances, 2025, 15(3): 1549-1556. DOI:10.1039/d4ra07007k
    2. Zhan, N., Jiang, L., Zhang, T. et al. Lagrangian perspective on the expansion dynamics and shielding effect of femtosecond laser-induced copper plasma plumes. Physics of Fluids, 2024, 36(4): 042014. DOI:10.1063/5.0196869
    3. Mei, Z., Wang, X., Imran, M. et al. Preliminary study of laser-induced breakdown spectroscopy for non-destructive pressure measurement in confined vacuum interlayers. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.112197
    4. Zhang, F., Wang, Q., Jiang, Y. et al. Reducing the detection limit of trace metals in water by electrodeposition-assisted laser-induced breakdown spectroscopy with gold nanoparticles. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106626
    5. Zhang, F., Wang, Q., Jiang, Y. et al. Effect of gold nanoparticle concentration on spectral emission of AlO molecular bands in nanoparticle-enhanced laser-induced Al plasmas. Journal of Analytical Atomic Spectrometry, 2022, 38(2): 422-428. DOI:10.1039/d2ja00379a
    6. Wang, Y., Gao, H., Hong, Y. et al. Influence of distance from lens to sample surface on spectral sensitivity of femtosecond laser-induced breakdown spectroscopy with NaCl water film. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.964140
    7. Li, X., Liu, K., Zhou, R. et al. Laser-Induced Breakdown Spectroscopy and Its Application | [激光诱导击穿光谱技术及应用综述]. Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49(12): 1202003. DOI:10.3788/CJL202249.1202003
    8. Wang, Q., Ge, T., Liu, Y. et al. Highly sensitive analysis of trace elements in aqueous solutions using surface-enhanced and discharge-assisted laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2022, 37(2): 233-239. DOI:10.1039/d1ja00415h
    9. Wang, Q., Qi, H., Zeng, X. et al. Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas. Plasma Science and Technology, 2021, 23(11): 115504. DOI:10.1088/2058-6272/ac183b
    10. Wang, Q., Chen, A., Chen, Y. et al. Highly sensitive analysis of trace Pb in aqueous solution using electro-deposition and spark-discharge assisted laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36(9): 1889-1894. DOI:10.1039/d1ja00095k
    11. Wang, Q., Chen, A., Liu, Y. et al. Reduction of self-absorption in femtosecond laser-induced breakdown spectroscopy using spark discharge. Physics of Plasmas, 2021, 28(8): 083301. DOI:10.1063/5.0051244
    12. Wang, Q., Chen, A., Zeng, X. et al. Influence of spark discharge on Al(i) and AlO spectra in femtosecond laser-induced aluminum plasmas. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1112-1117. DOI:10.1039/d1ja00050k
    13. Li, Q., Chen, A., Zhang, D. et al. Time-resolved electron temperature and density of spark discharge assisted femtosecond laser-induced breakdown spectroscopy. Optik, 2021. DOI:10.1016/j.ijleo.2020.165812
    14. Shao, J., Guo, J., Wang, Q. et al. Influence of distance between focusing lens and sample surface on femtosecond laser-induced Cu plasma. Optik, 2020. DOI:10.1016/j.ijleo.2020.165137
    15. Yang, X., Chen, A., Li, S. et al. Effect of Parallel Plate Constraint on CN Molecular Spectra in Laser-Induced PMMA Plasma | [平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响]. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47(8): 0811002. DOI:10.3788/CJL202047.0811002
    16. Shao, J., Guo, J., Wang, Q. et al. Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy. Plasma Science and Technology, 2020, 22(7): 074001. DOI:10.1088/2058-6272/ab7901
    17. Sobral, H., Quintana-Silva, G., Robledo-Martinez, A. Time-resolved optical characterization of the interaction between a laser produced plasma and a spark discharge. Spectrochimica Acta - Part B Atomic Spectroscopy, 2020. DOI:10.1016/j.sab.2020.105844
    18. Shao, J., Guo, J., Wang, Q. et al. Spatial confinement effect on CN emission from nanosecond laser-induced PMMA plasma in air. Optik, 2020. DOI:10.1016/j.ijleo.2020.164448

    Other cited types(0)

Catalog

    Article views (159) PDF downloads (212) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return