Advanced Search+
Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
Citation: Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b

Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe

Funds: This study was partly supported by National Natural Science Foundation of China (Nos. 11475131, 11805011).
More Information
  • Received Date: November 18, 2018
  • We present the axial profiles of argon helicon plasma measured by a local optical emission spectroscope (OES) and Langmuir RF-compensated probe. The results show that the emission intensity of the argon atom lines (750 nm, 811 nm) is proportional to the plasma density determined by the Langmuir probe. The axial profile of helicon plasma depends on the discharge mode which changes with the RF power. Excited by helical antenna, the axial distribution of plasma density is similar to that of the external magnetic field in the capacitive coupled mode (E-mode). As the discharge mode changes into the inductively coupled mode (H-mode), the axial distribution of plasma density in the downstream can still be similar to that of the external magnetic field, but becomes more uniform in the upstream. When the discharge entered wave coupled mode (W-mode), the plasma becomes nearly uniform along the axis, showing a completely different profile from the magnetic field. The W-mode is expected to be a mixed pattern of helicon (H) and Trivelpiece-Gould (TG) waves.
  • [1]
    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
    [2]
    Shinohara S et al 2009 Phys. Plasmas 16 057104
    [3]
    Takahashi K et al 2014 Plasma Sources Sci. Technol. 23 044004
    [4]
    Takahashi K, Komuro A and Ando A 2015 Plasma Sources Sci. Technol. 24 055004
    [5]
    Xia G Q et al 2015 Spacecraft Environ. Eng. 32 1 (in Chinese)
    [6]
    Wang S J et al 2007 J. Korean Phys. Soc. 51 989
    [7]
    Wang Y et al 2015 Phys. Plasmas 22 093507
    [8]
    Barada K K et al 2013 Phys. Plasmas 20 012123
    [9]
    Sato G, Oohara W and Hatakeyama R 2007 Plasma Sources Sci. Technol. 16 734
    [10]
    Chen F F 2003 Phys. Plasmas 10 2586
    [11]
    Siddiqui MU and Hershkowitz N 2014 Phys. Plasmas 21 020707
    [12]
    Zhao G et al 2018 Plasma Sci. Technol. 20 075402
    [13]
    Braginskii O V, Vasil’eva A N and Kovalev A S 2001 Plasma Phys. Rep. 27 699
    [14]
    Ma C et al 2015 IEEE Trans. Plasma Sci. 43 3702
    [15]
    Zhu X M et al 2006 Phys. Plasmas 13 123501
    [16]
    Zhao G et al 2017 Phys. Plasmas 24 123507
    [17]
    Shinohara S et al 2019 Plasma Phys. Controlied Fusion 61 014017
    [18]
    Curreli D and Chen F F 2011 Phys. Plasmas 18 113501
    [19]
    Liu L et al 2009 Plasma Sci. Technol. 11 307
    [20]
    Czerwiec T and Graves D B 2004 J. Phys. D: Appl. Phys. 37 2827
    [21]
    Clarenbach B et al 2007 J. Phys. D: Appl. Phys. 40 5117
    [22]
    Degeling A W et al 1996 Phys. Plasmas 3 2788
    [23]
    Ellingboe A R et al 1996 Phys. Plasmas 3 2797
    [24]
    Isayama S et al 2016 Phys. Plasmas 23 063513
    [25]
    Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
    [26]
    Djermanova N et al 2004 Vacuum 76 389
    [27]
    Afsharmanesh M and Habibi M 2017 Plasma Sci. Technol. 19 105403
    [28]
    Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
    [29]
    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339
    [30]
    Ganguli A, Sahu B B and Tarey R D 2007 Phys. Plasmas 14 113503
    [31]
    Wang Y 2017 Plasma Sci. Technol. 19 024003
    [32]
    Celik M 2011 Spectrochim. Acta Part B At. Spectrosc. 66 149
    [33]
    Chen F F 1992 J. Vac. Sci. Technol. A 10 1389
    [34]
    Trivelpiece A W and Gould R W 1959 J. Appl. Phys. 30 1784
    [35]
    Arnush D 2000 Phys. Plasmas 7 3042
    [36]
    Ganguli A, Sahu B B and Tarey R D 2011 Plasma Sources Sci. Technol. 20 015021
  • Related Articles

    [1]Gao ZHAO (赵高), Wanying ZHU (朱婉莹), Huihui WANG (王慧慧), Qiang CHEN (陈强), Chang TAN (谭畅), Jiting OUYANG (欧阳吉庭). Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe[J]. Plasma Science and Technology, 2018, 20(7): 75402-075402. DOI: 10.1088/2058-6272/aab4f1
    [2]Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
    [3]Yi CHEN (陈毅), Fei YANG (杨飞), Hao SUN (孙昊), Yi WU (吴翊), Chunping NIU (纽春萍), Mingzhe RONG (荣命哲). Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker[J]. Plasma Science and Technology, 2017, 19(6): 64003-064003. DOI: 10.1088/2058-6272/aa65c8
    [4]QU Hao (屈浩), ZHANG Tao (张涛), ZHANG Shoubiao (张寿彪), WEN Fei (文斐), WANG Yumin (王嵎民), KONG Defeng (孔德峰), HAN Xiang (韩翔), YANG Yao (杨曜), GAO Yu (高宇), HUANG Canbin (黄灿斌), CAI Jianqing (蔡剑青), GAO Xiang (高翔), the EAST team. Q-Band X-Mode Reflectometry and Density Profile Reconstruction[J]. Plasma Science and Technology, 2015, 17(12): 985-990. DOI: 10.1088/1009-0630/17/12/01
    [5]WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03
    [6]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [7]ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04
    [8]WU Cheng (吴诚), PAN Wanjiang (潘皖江). Research and Analysis on Tensile and Compressive Fatigue Performance of Cryogenic Axial Insulation Breaks[J]. Plasma Science and Technology, 2013, 15(7): 716-720. DOI: 10.1088/1009-0630/15/7/20
    [9]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [10]JIA Shenli, SONG Xiaochuan, HUO Xintao, SHI Zongqian, WANG Lijun. Investigation of Vacuum Arc Voltage Characteristics Under Different Axial Magnetic Field Profiles[J]. Plasma Science and Technology, 2010, 12(6): 729-733.
  • Cited by

    Periodical cited type(17)

    1. Cui, Y., He, F., Zhang, T. et al. The Effect of Magnetic Field and Pressure on the Threshold Power for Entering Helicon Wave Mode. 2024. DOI:10.1109/CIEEC60922.2024.10583404
    2. Sun, B., Zhang, Y., Zhou, C. et al. Influence Mechanism of Magnetic Field and Wave Modes on Helicon Plasma Thruster. AIAA Journal, 2023, 61(12): 5264-5276. DOI:10.2514/1.J063137
    3. Al-Yousef, H.A., Atta, M.R., Abdeltwab, E. et al. Effects of a modified argon glow plasma source on PET polymeric surface properties. Emerging Materials Research, 2023, 12(2): 163-175. DOI:10.1680/jemmr.22.00199
    4. Cui, R., Zhang, T., Yuan, Q. et al. Comparison of heating mechanisms of argon helicon plasma in different wave modes with and without blue core. Plasma Science and Technology, 2023, 25(1): 015403. DOI:10.1088/2058-6272/ac8510
    5. Zhang, T., Cui, R., Han, R. et al. Nitrogen discharge characteristics and species kinetics in helicon plasma source. Plasma Sources Science and Technology, 2022, 31(10): 105008. DOI:10.1088/1361-6595/ac95bd
    6. Zhu, W., Cui, R., He, F. et al. On the mechanism of density peak at low magnetic field in argon helicon plasmas. Physics of Plasmas, 2022, 29(9): 093511. DOI:10.1063/5.0091471
    7. Zhao, J., Miao, J., Zhang, T. et al. Microwave propagation along nonuniform plasma column as surface plasmon. Physics of Plasmas, 2022, 29(6): 063505. DOI:10.1063/5.0086467
    8. Wang, Y., Cui, R., Han, R. et al. Comparison of double layer in argon helicon plasma and magnetized DC discharge plasma. Plasma Science and Technology, 2022, 24(3): 035401. DOI:10.1088/2058-6272/ac1d9b
    9. Zhu, W., Cui, R., Han, R. et al. Observation of low-frequency oscillation in argon helicon discharge. Plasma Science and Technology, 2022, 25(2): 025401. DOI:10.1088/2058-6272/ac8850
    10. Wang, C., Liu, Y., Sun, M. et al. Effect of inhomogeneous magnetic field on blue core in Ar helicon plasma. Physics of Plasmas, 2021, 28(12): 123519. DOI:10.1063/5.0070479
    11. Zhu, W., Cui, R., He, F. et al. Striations in helicon-type argon plasma. Physics of Plasmas, 2021, 28(11): 113502. DOI:10.1063/5.0065771
    12. Wang, C., Liu, X., Geng, J. et al. Magnetic and pressure effects on E-H mode transition power and electron energy distribution in helical antenna-coupled RF Plasma. IEEE Transactions on Plasma Science, 2021, 49(9): 2806-2816. DOI:10.1109/TPS.2021.3101194
    13. Lyu, X., Yuan, C., Avtaeva, S. et al. A Large-area dc Grid Anode Glow Discharge in Helium. Plasma Physics Reports, 2021, 47(4): 369-376. DOI:10.1134/S1063780X21040061
    14. Yang, K., Cui, R., Zhu, W. et al. Effect of magnetic field on double layer in argon helicon plasma. High Voltage, 2021, 6(2): 358-365. DOI:10.1049/hve2.12018
    15. ZHANG, Z., ZHANG, Z., TANG, H. et al. Electron population properties with different energies in a helicon plasma source. Plasma Science and Technology, 2020, 23(1): abae4a. DOI:10.1088/2058-6272/abae4a
    16. Zhang, T., Zhang, T., Jiang, K. et al. Characteristics of inductively coupled plasma (ICP) and helicon plasma in a single-loop antenna. Plasma Science and Technology, 2020, 22(8): 085405. DOI:10.1088/2058-6272/ab8551
    17. Mei, D., Fang, Z., Shao, T. Recent Progress on Characteristics and Applications of Atmospheric Pressure Low Temperature Plasmas | [大气压低温等离子体特性与应用研究现状]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(4): 1339-1358. DOI:10.13334/j.0258-8013.pcsee.191615

    Other cited types(0)

Catalog

    Article views (206) PDF downloads (585) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return