Advanced Search+
Ronggang WANG (王荣刚), Ben LI (李犇), Tongkai ZHANG (张桐恺), Jiting OUYANG (欧阳吉庭), Yurong SUN (孙玉荣). The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 85002-085002. DOI: 10.1088/2058-6272/ab777b
Citation: Ronggang WANG (王荣刚), Ben LI (李犇), Tongkai ZHANG (张桐恺), Jiting OUYANG (欧阳吉庭), Yurong SUN (孙玉荣). The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 85002-085002. DOI: 10.1088/2058-6272/ab777b

The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance

Funds: This work was partly supported by National Natural Science Foundation of China (No. 11475019)
More Information
  • Received Date: November 13, 2019
  • Revised Date: February 15, 2020
  • Accepted Date: February 16, 2020
  • Plasma photonic crystals (PPCs) have been a hot research topic in the band gap (BG) material field in recent years due to their unique advantages, such as the feasibility of changing the parameters and hence the properties of the materials with respect to traditional photonic crystals (PCs). In this paper, we focus mainly on the effects of some types of defects introduced in PPCs on the changes in BG characteristics of microwave (MW) transmittance. The research is carried out using numerical simulation with a one-dimensional finite-difference time-domain (FDTD) method, and six types of defects, including a lattice-constant defect, radii-ratio defect, additional-column defect, column-width defect, plasma-frequency defect, and electron-collision-frequency defect, are concerned. It transpires that introducing a defect in a PPC in different manners may realize the symmetric change, alternative change, shifting, generating, transforming, disappearing, and attenuating of BGs in transmittance spectra, which has great potential for the manufacture of spatiotemporal-controllable MW materials and devices with more feasible modulating functions.
  • [1]
    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
    [2]
    John S 1987 Phys. Rev. Lett. 58 2486
    [3]
    Yablonovitch E 2000 Science 289 557
    [4]
    Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals: Molding the Flow of Light (Princeton, NJ: Princeton University Press)
    [5]
    Fan S H et al 1997 Phys. Rev. Lett. 78 3294
    [6]
    Fan S H and Joannopoulos J D 2002 Phys. Rev. B 65 235112
    [7]
    Sakai O et al 2013 Phys. Plasmas 20 073506
    [8]
    Villeneuve P R, Fan S H and Joannopoulos J D 1996 Phys.Rev. B 54 7837
    [9]
    Chaudhari M K and Chaudhari S 2016 Phys. Plasmas 23 112118
    [10]
    Wang B and Cappelli M A 2015 Appl. Phys. Lett. 107 171107
    [11]
    Yin Y et al 2009 Phys. Plasmas 16 102103
    [12]
    Shukla S, Prasad S and Singh V 2015 Phys. Plasmas 22 022122
    [13]
    Hojo H, Akimoto K and Mase A 2004 J. Plasma Fusion Res.80 177
    [14]
    Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 89
    [15]
    Fan W L and Dong L F 2010 Phys. Plasmas 17 073506
    [16]
    Zhang L and Ouyang J T 2016 Plasma Sci. Technol. 18 266
    [17]
    Zhang L and Ouyang J T 2014 Phys. Plasmas 21 103514
    [18]
    Varault S et al 2011 Appl. Phys. Lett. 98 134103
    [19]
    Wang B and Cappelli M A 2016 Appl. Phys. Lett. 108 161101
    [20]
    Wang B et al 2017 Microw. Opt. Technol. Lett. 59 3097
    [21]
    Liu S, Zhong S Y and Liu S Q 2009 Plasma Sci. Technol.11 14
    [22]
    Kong X K et al 2010 Phys. Plasmas 17 103506
    [23]
    Qi L, Yang Z and Fu T 2012 Phys. Plasmas 19 012509
    [24]
    Sullivan D M 2000 Electromagnetic Simulation Using the FDTD Method 2nd edn (New York: Wiley)
    [25]
    Yu W 2009 Electromagnetic Simulation Techniques Based on the FDTD Method (New York: Wiley)
  • Related Articles

    [1]Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d
    [2]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [3]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [4]Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2017, 19(2): 25506-025506. DOI: 10.1088/2058-6272/19/2/025506
    [5]Y WANG (王宇), G ZHAO (赵高), C NIU (牛晨), Z W LIU (刘忠伟), J T OUYANG (欧阳吉庭), Q CHEN (陈强). Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field[J]. Plasma Science and Technology, 2017, 19(2): 24003-024003. DOI: 10.1088/2058-6272/19/2/024003
    [6]Atif HUSSAIN, Xun GAO (高勋), QiLI (李奇), Zuoqiang HAO (郝作强), Jingquan LIN (林景全). Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics[J]. Plasma Science and Technology, 2017, 19(1): 15505-015505. DOI: 10.1088/1009-0630/19/1/015505
    [7]WANG Jingge (王静鸽), FU Hongbo (付洪波), NI Zhibo (倪志波), CHEN Xinglong (陈兴龙), HE Wengan (贺文干), DONG Fengzhong (董凤忠). Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample[J]. Plasma Science and Technology, 2015, 17(8): 649-655. DOI: 10.1088/1009-0630/17/8/07
    [8]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [9]ZHAO Qing(赵青), XING Xiaojun(邢晓俊), XUAN Yinliang(宣银良), LIU Shuzhang(刘述章). The Influence of Magnetic Field on Antenna Performance in Plasma[J]. Plasma Science and Technology, 2014, 16(6): 614-619. DOI: 10.1088/1009-0630/16/6/14
    [10]ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11

Catalog

    Article views (145) PDF downloads (84) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return