Advanced Search+
WANG Jingge (王静鸽), FU Hongbo (付洪波), NI Zhibo (倪志波), CHEN Xinglong (陈兴龙), HE Wengan (贺文干), DONG Fengzhong (董凤忠). Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample[J]. Plasma Science and Technology, 2015, 17(8): 649-655. DOI: 10.1088/1009-0630/17/8/07
Citation: WANG Jingge (王静鸽), FU Hongbo (付洪波), NI Zhibo (倪志波), CHEN Xinglong (陈兴龙), HE Wengan (贺文干), DONG Fengzhong (董凤忠). Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample[J]. Plasma Science and Technology, 2015, 17(8): 649-655. DOI: 10.1088/1009-0630/17/8/07

Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample

Funds: supported by National Natural Science Foundation of China (No. 11075184) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. Y03RC21124)
More Information
  • Received Date: December 06, 2014
  • Laser-Induced Breakdown Spectroscopy (LIBS) has been demonstrated to be an effective method for slag analysis. In order to better clarify the nature of the plasma generated from a slag sample, an Nd:YAG pulse laser at 1064 nm wavelength was used to ablate the slag sample in air. The temporal and spatial evolutions of plasma parameters, including emission intensity, electronic density and plasma temperature, have been studied. It is shown that the electron density and plasma temperature drop off rapidly with the delay time as a result of plasma expansion and cooling. It has been found that the electron density of the whole plasma is close to that of the center regions in the plasma. The results of the spatial distributions on the two-dimensional plane have shown that there is a big region with lower electron density values caused by the recombination process in the center of the plasma. The maximum of the plasma temperature takes place at the regions close to the target, and the border of the plasma front-head has higher plasma temperatures than that of the center part.
  • 1 Sturm V, Schmitz H U, Reuter T, et al. 2008, Spectrochim. Acta Part B, 63: 1167 2 Kraushaar M, Noll R, Schmitz H U. 2003, Appl. Spectrosc., 57: 1282 3 Ni Z B, Chen X L, Fu H B, et al. 2014, Front. Phys.,9: 439 4 Dong F Z, Chen X L, Wang Q, et al. 2012, Front.Phys., 7: 679 5 Caceres J O, Moncayo S, Rosales J D, et al. 2013,Appl. Spectrosc., 67: 1064 6 Colaoa F, Fantoni R, Lazic V, et al. 2004, Planetary and Space Science, 52: 117 7 Osticioli I, Wolf M, Anglos D. 2008, Appl. Spectrosc.,62: 1242 8 Michel A P M. 2010, Spectrochim. Acta Part B, 65:185 9 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Front. Phys.,9: 419 10 Monge E M, Aragon C, Aguilera J A, et al. 1999, Appl.Phys. A, 69 (Suppl.): S691 11 Corsi M, Cristoforetti G, Hidalgo M, et al. 2003, Appl.Spectrosc., 57: 715 12 Aguilera J A, Aragon C. 2002, Appl. Surf. Sci., 197-198: 273 13 Aguilera J A, Aragon C, Bengoechea J. 2003, Appl.Optics, 42: 5938 14 Ma Q L, Motto-Ros V, Lei W Q, et al. 2010, Spectrochim. Acta Part B, 65: 896 15 Pedarnig J D, Kolmhofer P, Huber N, et al. 2013, Appl.Phys. A, 112: 105 16 Praher B, Rossler R, Arenholz E, et al. 2011, Anal.Bioanal. Chem., 400: 3367 17 Harilal S S, Bindhu C V, Nampoori V P N, et al. 1998,Appl. Spectrosc., 52: 449 18 Yalcin S, Crosley D R, Smith G P, et al. 1999, Appl.Phys. B, 68: 121 19 Aguilera J A, Aragon C. 2004, Spectrochim. Acta Part B, 59: 1861 20 NIST Atomic Spectra Database,http://physics.nist.gov 21 Giacomo A D, Dell’Aglio M, Gaudiuso R, et al. 2008,Spectrochim. Acta Part B, 63: 980
  • Related Articles

    [1]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]Xiaoming ZHU (朱晓鸣), Heng GUO (郭恒), Jianfeng ZHOU (周建锋), Xiaofei ZHANG (张晓菲), Jian CHEN (陈坚), Jing LI (李静), Heping LI (李和平), Jianguo TAN (谭建国). Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces[J]. Plasma Science and Technology, 2018, 20(4): 44010-044010. DOI: 10.1088/2058-6272/aaa6be
    [4]N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7
    [5]Yu WANG (王羽), Lu QU (屈路), Tianjun SI (姒天军), Yang NI (倪阳), Jianwei XU (徐建伟), Xishan WEN (文习山). Experimental study of rotating wind turbine breakdown characteristics in large scale air gaps[J]. Plasma Science and Technology, 2017, 19(6): 64016-064016. DOI: 10.1088/2058-6272/aa6743
    [6]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [7]Asma BEGUM, Mounir LAROUSSI, M. R. PERVEZ. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil[J]. Plasma Science and Technology, 2013, 15(7): 627-634. DOI: 10.1088/1009-0630/15/7/05
    [8]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [9]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.

Catalog

    Article views (423) PDF downloads (1069) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return