Advanced Search+
WANG Jingge (王静鸽), FU Hongbo (付洪波), NI Zhibo (倪志波), CHEN Xinglong (陈兴龙), HE Wengan (贺文干), DONG Fengzhong (董凤忠). Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample[J]. Plasma Science and Technology, 2015, 17(8): 649-655. DOI: 10.1088/1009-0630/17/8/07
Citation: WANG Jingge (王静鸽), FU Hongbo (付洪波), NI Zhibo (倪志波), CHEN Xinglong (陈兴龙), HE Wengan (贺文干), DONG Fengzhong (董凤忠). Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample[J]. Plasma Science and Technology, 2015, 17(8): 649-655. DOI: 10.1088/1009-0630/17/8/07

Temporal and Spatial Evolution of Laser-Induced Plasma from a Slag Sample

Funds: supported by National Natural Science Foundation of China (No. 11075184) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. Y03RC21124)
More Information
  • Received Date: December 06, 2014
  • Laser-Induced Breakdown Spectroscopy (LIBS) has been demonstrated to be an effective method for slag analysis. In order to better clarify the nature of the plasma generated from a slag sample, an Nd:YAG pulse laser at 1064 nm wavelength was used to ablate the slag sample in air. The temporal and spatial evolutions of plasma parameters, including emission intensity, electronic density and plasma temperature, have been studied. It is shown that the electron density and plasma temperature drop off rapidly with the delay time as a result of plasma expansion and cooling. It has been found that the electron density of the whole plasma is close to that of the center regions in the plasma. The results of the spatial distributions on the two-dimensional plane have shown that there is a big region with lower electron density values caused by the recombination process in the center of the plasma. The maximum of the plasma temperature takes place at the regions close to the target, and the border of the plasma front-head has higher plasma temperatures than that of the center part.
  • 1 Sturm V, Schmitz H U, Reuter T, et al. 2008, Spectrochim. Acta Part B, 63: 1167 2 Kraushaar M, Noll R, Schmitz H U. 2003, Appl. Spectrosc., 57: 1282 3 Ni Z B, Chen X L, Fu H B, et al. 2014, Front. Phys.,9: 439 4 Dong F Z, Chen X L, Wang Q, et al. 2012, Front.Phys., 7: 679 5 Caceres J O, Moncayo S, Rosales J D, et al. 2013,Appl. Spectrosc., 67: 1064 6 Colaoa F, Fantoni R, Lazic V, et al. 2004, Planetary and Space Science, 52: 117 7 Osticioli I, Wolf M, Anglos D. 2008, Appl. Spectrosc.,62: 1242 8 Michel A P M. 2010, Spectrochim. Acta Part B, 65:185 9 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Front. Phys.,9: 419 10 Monge E M, Aragon C, Aguilera J A, et al. 1999, Appl.Phys. A, 69 (Suppl.): S691 11 Corsi M, Cristoforetti G, Hidalgo M, et al. 2003, Appl.Spectrosc., 57: 715 12 Aguilera J A, Aragon C. 2002, Appl. Surf. Sci., 197-198: 273 13 Aguilera J A, Aragon C, Bengoechea J. 2003, Appl.Optics, 42: 5938 14 Ma Q L, Motto-Ros V, Lei W Q, et al. 2010, Spectrochim. Acta Part B, 65: 896 15 Pedarnig J D, Kolmhofer P, Huber N, et al. 2013, Appl.Phys. A, 112: 105 16 Praher B, Rossler R, Arenholz E, et al. 2011, Anal.Bioanal. Chem., 400: 3367 17 Harilal S S, Bindhu C V, Nampoori V P N, et al. 1998,Appl. Spectrosc., 52: 449 18 Yalcin S, Crosley D R, Smith G P, et al. 1999, Appl.Phys. B, 68: 121 19 Aguilera J A, Aragon C. 2004, Spectrochim. Acta Part B, 59: 1861 20 NIST Atomic Spectra Database,http://physics.nist.gov 21 Giacomo A D, Dell’Aglio M, Gaudiuso R, et al. 2008,Spectrochim. Acta Part B, 63: 980
  • Related Articles

    [1]Changyan DONG, Hongxia YU, Lanxiang SUN, Yang LI, Xiuye LIU, Ping ZHOU, Shaowen HUANG. Characteristics of laser-induced breakdown spectroscopy of liquid slag[J]. Plasma Science and Technology, 2024, 26(2): 025502. DOI: 10.1088/2058-6272/ad0c25
    [2]Ding WU (吴鼎), George C-Y CHAN, Xianglei MAO (毛向雷), Yu LI (李裕), Richard E RUSSO, Hongbin DING (丁洪斌), Vassilia ZORBA. Temporal and spatial study of differently charged ions emitted by ns-laser-produced tungsten plasmas using time-of-flight mass spectroscopy[J]. Plasma Science and Technology, 2021, 23(9): 95505-095505. DOI: 10.1088/2058-6272/ac08e1
    [3]Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d
    [4]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [5]Manjeet SINGH, Arnab SARKAR. Time-resolved evaluation of uranium plasma in different atmospheres by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(12): 125501. DOI: 10.1088/2058-6272/aad866
    [6]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [7]Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0
    [8]Xiong YANG (杨雄), Mousen CHENG (程谋森), Dawei GUO (郭大伟), Moge WANG (王墨戈), Xiaokang LI (李小康). Characteristics of temporal evolution of particle density and electron temperature in helicon discharge[J]. Plasma Science and Technology, 2017, 19(10): 105402. DOI: 10.1088/2058-6272/aa808a
    [9]Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2017, 19(2): 25506-025506. DOI: 10.1088/2058-6272/19/2/025506
    [10]WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06

Catalog

    Article views (423) PDF downloads (1069) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return