Citation: | Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d |
[1] |
Bigot B 2019 Nucl. Fusion 59 112001
|
[2] |
Brezinsek S et al 2013 Nucl. Fusion 53 083023
|
[3] |
Wang Z et al 2014 Front. Phys. 9 419
|
[4] |
Li C et al 2016 Front. Phys. 11 114214
|
[5] |
Fu Y T et al 2019 Plasma Sci. Technol. 21 030101
|
[6] |
Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol.17 617
|
[7] |
Guo L B et al 2016 Front. Phys. 11 115208
|
[8] |
Philipps V et al 2013 Nucl. Fusion 53 093002
|
[9] |
Li C et al 2015 J. Nucl. Mater. 463 915
|
[10] |
Paris P et al 2015 Fusion Eng. Des. 98-99 1349
|
[11] |
Semerok A et al 2016 Spectrochim. Acta B 123 121
|
[12] |
Li C et al 2017 Phys. Scr. T170 014004
|
[13] |
Li C et al 2019 Spectrochim. Acta B 160 105689
|
[14] |
Zhao D Y et al 2018 Rev. Sci. Instrum. 89 073501
|
[15] |
Hu Z H et al 2017 Plasma Sci. Technol. 19 025502
|
[16] |
Dias M et al 2017 J. Nucl. Mater. 492 105
|
[17] |
Capitelli M et al 2004 Spectrochim. Acta B 59 271
|
[18] |
De Giacomo A et al 2012 Spectrochim. Acta B 78 1
|
[19] |
Lu W J et al 2018 Opt. Express 26 30409
|
[20] |
Wang J G et al 2015 Plasma Sci. Technol. 17 649
|
[21] |
Li C et al 2015 Plasma Sci. Technol. 17 638
|
[22] |
Zhao D Y et al 2018 Plasma Sci. Technol. 20 014022
|
[23] |
Walker A L, Curry D L and Fannin H B 1994 Appl. Spectrosc.48 333
|
[24] |
NIST Atomic Spectra Database (ver.5.7), National Institute of Standards and Technology (https://doi.org/10.18434/T4W30F)
|
1. | Cui, Z., Wu, H., Wu, D. et al. Spatiotemporal Evolution of Aluminum-lithium Alloy Plasma Using a Coaxial LIBS System under Vacuum | [真空中同轴LIBS系统下铝锂合金等离子体时空演化行为研究]. Guangzi Xuebao/Acta Photonica Sinica, 2023, 52(9): 0930002. DOI:10.3788/gzxb20235209.0930002 | |
2. | Li, C., Li, Q., Li, L. et al. Characteristic of spatiotemporal evolution of hydrogen isotope in laser-induced plasma under low-pressure environment. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106735 | |
3. | Yuan, S., Wu, D., Wu, H.-C. et al. Study on the Temporal and Spatial Evolution of Optical Emission From the Laser Induced Multi-Component Plasma of Tungsten Carbide Copper Alloy in Vacuum | [真空下激光烧蚀碳化钨铜多组分等离子体发射光谱的时空演化研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2023, 43(5): 1384-1400. DOI:10.3964/j.issn.1000-0593(2023)05-1394-07 | |
4. | Hang, Y.-H., Qiu, Y., Zhou, Y. et al. Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy. Chinese Physics B, 2022, 31(2): 024212. DOI:10.1088/1674-1056/ac1fdb | |
5. | Dwivedi, V., Veis, M., Marín Roldán, A. et al. CF-LIBS study of pure Ta, and WTa + D coating as fusion-relevant materials: a step towards future in situ compositional quantification at atmospheric pressure. European Physical Journal Plus, 2021, 136(11): 1177. DOI:10.1140/epjp/s13360-021-02179-0 | |
6. | Wu, H., Li, C., Wu, D. et al. Characterization of laser-induced breakdown spectroscopy on tungsten at variable ablation angles using a coaxial system in a vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2074-2084. DOI:10.1039/d1ja00196e | |
7. | Xue, B., Tian, Y., Li, N. et al. Spatiotemporal and spectroscopic investigations of the secondary plasma generated during double-pulse laser-induced breakdown in bulk water. Journal of Analytical Atomic Spectrometry, 2020, 35(12): 2880-2892. DOI:10.1039/d0ja00139b | |
8. | Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7 |