Advanced Search+
Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d
Citation: Cong LI (李聪), Jiajia YOU (游加加), Huace WU (武华策), Ding WU (吴鼎), Liying SUN (孙立影), Jiamin LIU (刘佳敏), Qianhui LI (李千惠), Ran HAI (海然), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 2020, 22(7): 74008-074008. DOI: 10.1088/2058-6272/ab823d

Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum

Funds: This work was supported by National Key R&D Program of China (No. 2017TFE0301300), the National Natural Science Foundation of China (Nos. 11605023, 11805028, 11861131010), and the China Postdoctoral Science Founda- tion (Nos. 2017T100172, 2016M591423).
More Information
  • Received Date: December 30, 2019
  • Revised Date: March 18, 2020
  • Accepted Date: March 22, 2020
  • Fuel retention measurement on plasma-facing components is an active field of study in magnetic confinement nuclear fusion devices. The laser-induced breakdown spectroscopy (LIBS) diagnostic method has been well demonstrated to detect the elemental distribution in PFCs. In this work, an upgraded co-axis LIBS system based on a linear fiber bundle collection system has been developed to measure the hydrogen (H) retention on a tantalum (Ta) sample under a vacuum condition. The spatial resolution measurement of the different positions of the LIBS plasma can be achieved simultaneously with varying delay times. The temporal and spatial evolution results of LIBS plasma emission show that the H plasma observably expands from the delay times of 0–200ns. The diameter of Ta plasma is about 6mm which is much less than the size of H plasma after 200ns. The difference in the temporal and spatial evolution behaviors between H plasma and Ta plasma is due to the great difference in the atomic mass of H and Ta. The depth profile result shows that H retention mainly exists on the surface of the sample. The temporal and spatial evolution behaviors of the electron excited temperature are consistent with that of the Ta emission. The result will further improve the understanding of the evolution of the dynamics of LIBS plasma and optimize the current collection system of in situ LIBS in fusion devices.
  • [1]
    Bigot B 2019 Nucl. Fusion 59 112001
    [2]
    Brezinsek S et al 2013 Nucl. Fusion 53 083023
    [3]
    Wang Z et al 2014 Front. Phys. 9 419
    [4]
    Li C et al 2016 Front. Phys. 11 114214
    [5]
    Fu Y T et al 2019 Plasma Sci. Technol. 21 030101
    [6]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol.17 617
    [7]
    Guo L B et al 2016 Front. Phys. 11 115208
    [8]
    Philipps V et al 2013 Nucl. Fusion 53 093002
    [9]
    Li C et al 2015 J. Nucl. Mater. 463 915
    [10]
    Paris P et al 2015 Fusion Eng. Des. 98-99 1349
    [11]
    Semerok A et al 2016 Spectrochim. Acta B 123 121
    [12]
    Li C et al 2017 Phys. Scr. T170 014004
    [13]
    Li C et al 2019 Spectrochim. Acta B 160 105689
    [14]
    Zhao D Y et al 2018 Rev. Sci. Instrum. 89 073501
    [15]
    Hu Z H et al 2017 Plasma Sci. Technol. 19 025502
    [16]
    Dias M et al 2017 J. Nucl. Mater. 492 105
    [17]
    Capitelli M et al 2004 Spectrochim. Acta B 59 271
    [18]
    De Giacomo A et al 2012 Spectrochim. Acta B 78 1
    [19]
    Lu W J et al 2018 Opt. Express 26 30409
    [20]
    Wang J G et al 2015 Plasma Sci. Technol. 17 649
    [21]
    Li C et al 2015 Plasma Sci. Technol. 17 638
    [22]
    Zhao D Y et al 2018 Plasma Sci. Technol. 20 014022
    [23]
    Walker A L, Curry D L and Fannin H B 1994 Appl. Spectrosc.48 333
    [24]
    NIST Atomic Spectra Database (ver.5.7), National Institute of Standards and Technology (https://doi.org/10.18434/T4W30F)
  • Related Articles

    [1]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [2]Hongbo FU (付洪波), Zhibo NI (倪志波), Huadong WANG (王华东), Junwei JIA (贾军伟), Fengzhong DONG (董凤忠). Accuracy improvement of calibration-free laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34001-034001. DOI: 10.1088/2058-6272/aaead6
    [3]Yangting FU (傅杨挺), Zongyu HOU (侯宗余), Yoshihiro DEGUCHI (出口祥啓), Zhe WANG (王哲). From big to strong: growth of the Asian laser-induced breakdown spectroscopy community[J]. Plasma Science and Technology, 2019, 21(3): 30101-030101. DOI: 10.1088/2058-6272/aaf873
    [4]Zhenhua JIANG (姜振华), Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Dan ZHANG (张丹), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of distances between lens and sample surface on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2018, 20(8): 85503-085503. DOI: 10.1088/2058-6272/aabc5e
    [5]Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2017, 19(2): 25506-025506. DOI: 10.1088/2058-6272/19/2/025506
    [6]Zhenhua HU (胡振华), Cong LI (李聪), Qingmei XIAO (肖青梅), Ping LIU (刘平), Fang DING (丁芳), Hongmin MAO (毛红敏), Jing WU (吴婧), Dongye ZHAO (赵栋烨), Hongbin DING (丁洪斌), Guang-Nan LUO (罗广南), EAST team. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST[J]. Plasma Science and Technology, 2017, 19(2): 25502-025502. DOI: 10.1088/2058-6272/19/2/025502
    [7]Ying LI (李颖), Yanhong GU (谷艳红), Ying ZHANG (张莹), Yuandong LI (李远东), Yuan LU (卢渊). Analytical study of seashell using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2017, 19(2): 25501-025501. DOI: 10.1088/2058-6272/19/2/025501
    [8]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [9]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [10]WANG Teng (王腾), GAO Xiangdong (高向东), Katayama SEIJI. Analysis of Laser-Induced Plume During Disk Laser Welding at Different Speeds[J]. Plasma Science and Technology, 2013, 15(8): 821-824. DOI: 10.1088/1009-0630/15/8/20
  • Cited by

    Periodical cited type(16)

    1. Shentu, L., Peng, D., Xi, J. A novel neural network architecture dedicated for LIBS spectrum analysis with its application to steel pipe classification. Measurement Science and Technology, 2025, 36(1): 015215. DOI:10.1088/1361-6501/ad9166
    2. Hao, Z., Liu, K., Lian, Q. et al. Machine learning in laser-induced breakdown spectroscopy: A review. Frontiers of Physics, 2024, 19(6): 62501. DOI:10.1007/s11467-024-1427-2
    3. Wang, A., Cui, J.-C., Song, W.-R. et al. Quantitative Analysis of Coal Properties Using Laser-Induced Breakdown Spectroscopy and Semi-Supervised Learning | [基 于 激 光诱 导 击穿 光谱 与 半监 督 学 习 的 煤质 定 量 分 析 研 究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44(7): 1940-1945. DOI:10.3964/j.issn.1000-0593(2024)07-1940-06
    4. Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606
    5. Képeš, E., Vrábel, J., Siozos, P. et al. Quantification of alloying elements in steel targets: The LIBS 2022 regression contest. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106710
    6. Van den Eynde, S., Díaz-Romero, D.J., Zaplana, I. et al. Deep learning regression for quantitative LIBS analysis. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106634
    7. Zhu, Q.-X., Zhang, H.-T., Tian, Y. et al. Co-training based virtual sample generation for solving the small sample size problem in process industry. ISA Transactions, 2023. DOI:10.1016/j.isatra.2022.08.021
    8. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    9. Wang, Z., Afgan, M.S., Gu, W. et al. Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116385
    10. Chang, F., Yang, J., Lu, H. et al. Repeatability enhancing method for one-shot LIBS analysis: Via spectral intensity correction based on probability distribution. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1712-1723. DOI:10.1039/d1ja00040c
    11. Xu, W., Tang, J., Xia, H. A review of semi-supervised learning for industrial process regression modeling. 2021. DOI:10.23919/CCC52363.2021.9550262
    12. Li, D., Huang, D., Liu, Y. Research on semi-supervised heterogeneous adaptive co-training soft-sensor model | [基于协同训练的半监督异构自适应软测量建模方法的研究]. Huagong Xuebao/CIESC Journal, 2020, 71(5): 2128-2138. DOI:10.11949/0438-1157.20191378
    13. Gao, J., Tian, Y., Chen, X. Antenna Optimization Based on Co-Training Algorithm of Gaussian Process and Support Vector Machine. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.3039269
    14. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    15. Bai, X., Zhang, L., Yang, T. et al. Semi-supervised learning based acoustic NLOS identification for smartphone indoor positioning. 2019. DOI:10.1109/ICSPCC46631.2019.8960779
    16. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (138) PDF downloads (67) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return