Advanced Search+
Yangting FU (傅杨挺), Zongyu HOU (侯宗余), Yoshihiro DEGUCHI (出口祥啓), Zhe WANG (王哲). From big to strong: growth of the Asian laser-induced breakdown spectroscopy community[J]. Plasma Science and Technology, 2019, 21(3): 30101-030101. DOI: 10.1088/2058-6272/aaf873
Citation: Yangting FU (傅杨挺), Zongyu HOU (侯宗余), Yoshihiro DEGUCHI (出口祥啓), Zhe WANG (王哲). From big to strong: growth of the Asian laser-induced breakdown spectroscopy community[J]. Plasma Science and Technology, 2019, 21(3): 30101-030101. DOI: 10.1088/2058-6272/aaf873

From big to strong: growth of the Asian laser-induced breakdown spectroscopy community

More Information
  • [1]
    Brech F and Cross L 1962 Appl. Spectrosc. 16 59
    [2]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A
    [3]
    Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347
    [4]
    Wang Z et al 2014 Front. Phys. 9 419
    [5]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061
    [6]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol. 17 617
    [7]
    Guo L B et al 2016 Front. Phys. 11 115208
    [8]
    Wang Y et al 2019 Plasma Sci. Technol. 21 034013
    [9]
    Guo J et al 2019 Plasma Sci. Technol. 21 034022
    [10]
    Fu H et al 2019 Plasma Sci. Technol. 21 034001
    [11]
    In J-H et al 2019 Plasma Sci. Technol. 21 034010
    [12]
    Hou J et al 2018 Plasma Sci. Technol. accepted
    [13]
    Wang W et al 2019 Plasma Sci. Technol. 21 034004
    [14]
    Zhang D et al 2019 Plasma Sci. Technol. 21 034009
    [15]
    Sattar H et al 2019 Plasma Sci. Technol. 21 034019
    [16]
    Sato T et al 2019 Plasma Sci. Technol. 21 034021
    [17]
    Jia J et al 2019 Plasma Sci. Technol. 21 034003
    [18]
    Peng H et al 2019 Plasma Sci. Technol. 21 034008
    [19]
    Liu J et al 2019 Plasma Sci. Technol. 21 034017
    [20]
    Li X et al 2019 Plasma Sci. Technol. 21 034015
    [21]
    Zhan L et al 2019 Plasma Sci. Technol. 21 034018
    [22]
    Mei Y et al 2019 Plasma Sci. Technol. 21 034020
    [23]
    Lu C et al 2019 Plasma Sci. Technol. 21 034014
    [24]
    Shin S et al 2019 Plasma Sci. Technol. 21 034011
    [25]
    Pan C et al 2019 Plasma Sci. Technol. 21 034012
    [26]
    Zeng Q et al 2019 Plasma Sci. Technol. 21 034006
    [27]
    He X, Li R and Wang F 2019 Plasma Sci. Technol. 21 034005
    [28]
    Fang L et al 2019 Plasma Sci. Technol. 21 034002
    [29]
    Cui M et al 2019 Plasma Sci. Technol. 21 034007
    [30]
    Thomas N H et al 2018 JCR Planets 123 1996
    [31]
    Wang Z et al 2012 Front. Phys. 7 708
    [32]
    Yuan T B et al 2012 Appl. Opt. 51 B22
    [33]
    Feng J et al 2013 Appl. Spectrosc. 67 291
    [34]
    Yuan T B et al 2013 J. Anal. At. Spectrom. 28 1045
    [35]
    Li X W et al 2014 Appl. Spectrosc. 68 955
    [36]
    Li X W et al 2015 Plasma Sci. Technol. 17 928
    [37]
    Yuan T B et al 2014 Anal. Chim. Acta 807 29
    [38]
    Chen M Y et al 2015 Spectrochim. Acta B 112 23
    [39]
    Dong M R et al 2011 J. Anal. At. Spectrom. 26 2183
    [40]
    Yao S C et al 2011 Appl. Surf. Sci. 257 3103
    [41]
    Yao S C et al 2010 J. Anal. At. Spectrom. 25 1733
    [42]
    Yao S C et al 2012 J. Anal. At. Spectrom. 27 473
    [43]
    Zhang L et al 2012 Front. Phys. 7 690
    [44]
    Yin W B et al 2009 Appl. Spectrosc. 63 865
    [45]
    Zhang L et al 2008 Appl. Spectrosc. 62 458
    [46]
    Zhang L et al 2011 Appl. Spectrosc. 65 790
    [47]
    Noda M et al 2002 Spectrochim. Acta B 57 701
    [48]
    Kurihara M et al 2003 Appl. Opt. 42 6159
    [49]
    Sun L X et al 2015 Spectrochim. Acta B 112 40
    [50]
    Sun L X et al 2013 Adv. Mater. Res. 694–697 1260
    [51]
    Zhang B, Sun L X and Yu H B 2015 Appl. Mech. Mater. 751 86
    [52]
    Zeng Q D et al 2015 J. Anal. At. Spectrom. 30 403
    [53]
    Li K H et al 2015 J. Anal. At. Spectrom. 30 1623
    [54]
    Kashiwakura S and Wagatsuma K 2015 ISIJ Int. 55 2391
    [55]
    Kashiwakura S and Wagatsuma K 2013 Anal. Sci. 29 1159
    [56]
    Thornton B et al 2015 Deep Sea Res. I 95 20
    [57]
    Yoshino S et al 2018 Spectrochim. Acta B 145 1
    [58]
    Yoshino S, Takahashi T and Thornton B 2017 Towards in situ chemical classification of seafloor deposits: application of neural networks to underwater laser-induced breakdown spectroscopy OCEANS 2017-Aberdeen (Aberdeen, UK: IEEE) vol 1
    [59]
    Yelameli M et al 2016 Support vector machine based classification of seafloor rock types measured underwater using laser induced breakdown spectroscopy OCEANS 2016-Shanghai (Shanghai, China: IEEE) vol 1
    [60]
    Tian Y et al 2015 Appl. Phys. Lett. 107 111107
    [61]
    Lu Y et al 2015 Spectrochim. Acta B 110 63
    [62]
    Li Y D et al 2018 Appl. Opt. 57 3539
    [63]
    Guo J J et al 2017 Appl. Opt. 56 8196
    [64]
    Zhao D Y et al 2018 Rev. Sci. Instrum. 89 073501
    [65]
    Liu P et al 2018 Plasma Phys. Control. Fusion 60 085019
    [66]
    Hu Z et al 2017 Phys. Scr. 2017 014046
    [67]
    Hu Z H et al 2018 Fusion Eng. Des. 135 95
    [68]
    Ito C et al 2014 J. Nucl. Sci. Technol. 51 944
    [69]
    Saeki M et al 2014 J. Nucl. Sci. Technol. 51 930
    [70]
    Wang Z-Z et al 2017 Appl. Spectrosc. 71 2187–98
    [71]
    Cui M-C 2018 Spectrochim. Acta B 142 14–22
    [72]
    Rai V N et al 2003 Appl. Opt. 42 2085
    [73]
    Hao Z Q et al 2014 J. Anal. At. Spectrom. 29 2309
    [74]
    Guo L B et al 2011 Opt. Express 19 14067
    [75]
    Li X W et al 2014 J. Anal. At. Spectrom. 29 2127
    [76]
    Hou Z Y et al 2014 Opt. Express 22 12909
    [77]
    Shen X K et al 2007 J. Appl. Phys. 102 093301
    [78]
    Zhou W D et al 2012 Appl. Opt. 51 B42
    [79]
    Zhou W D et al 2010 Opt. Express 18 2573
    [80]
    Wang X C et al 2016 J. Anal. At. Spectrom. 31 2363
    [81]
    Cai B Y et al 2015 Spectrochim. Acta B 110 51
    [82]
    Cai Y et al 2012 Front. Phys. 7 670
    [83]
    Hou Z Y et al 2013 Opt. Express 21 15974
    [84]
    Yin H L et al 2015 J. Anal. At. Spectrom. 30 922
    [85]
    Fu Y T, Hou Z Y and Wang Z 2016 Opt. Express 24 3055
    [86]
    Zhang S et al 2018 Front. Phys. 13 135201
    [87]
    Ashrafkhani B et al 2015 Opt. Spectrosc. 118 841
    [88]
    Feng J et al 2010 Spectrochim. Acta B 65 549
    [89]
    Li L Z et al 2011 J. Anal. At. Spectrom. 26 2274
    [90]
    Li X W et al 2013 Spectrochim. Acta B 88 180
    [91]
    Wang Z et al 2012 Spectrochim. Acta B 68 58
    [92]
    Hou Z Y et al 2016 J. Anal. At. Spectrom. 31 722
    [93]
    Sun L and Yu H 2009 Spectrochim. Acta B 64 278
    [94]
    Zhang B et al 2013 J. Anal. At. Spectrom. 28 1884
    [95]
    Zhang B et al 2013 Appl. Spectrosc. 67 1087
    [96]
    Sun L X and Yu H B 2009 Talanta 79 388
    [97]
    Yang J H et al 2015 Spectrochim. Acta B 107 45
    [98]
    Takahashi T et al 2015 Spectrochim. Acta B 111 8
    [99]
    Sarkar A et al 2015 Spectrochim. Acta B 108 8
    [100]
    Wang Z-Z et al 2016 Frontiers Phys. 11 114213
  • Related Articles

    [1]Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f
    [2]Hongbo FU (付洪波), Zhibo NI (倪志波), Huadong WANG (王华东), Junwei JIA (贾军伟), Fengzhong DONG (董凤忠). Accuracy improvement of calibration-free laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34001-034001. DOI: 10.1088/2058-6272/aaead6
    [3]Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f
    [4]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [5]Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2017, 19(2): 25506-025506. DOI: 10.1088/2058-6272/19/2/025506
    [6]Zhenhua HU (胡振华), Cong LI (李聪), Qingmei XIAO (肖青梅), Ping LIU (刘平), Fang DING (丁芳), Hongmin MAO (毛红敏), Jing WU (吴婧), Dongye ZHAO (赵栋烨), Hongbin DING (丁洪斌), Guang-Nan LUO (罗广南), EAST team. Preliminary results of in situ laser-induced breakdown spectroscopy for the first wall diagnostics on EAST[J]. Plasma Science and Technology, 2017, 19(2): 25502-025502. DOI: 10.1088/2058-6272/19/2/025502
    [7]Ying LI (李颖), Yanhong GU (谷艳红), Ying ZHANG (张莹), Yuandong LI (李远东), Yuan LU (卢渊). Analytical study of seashell using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2017, 19(2): 25501-025501. DOI: 10.1088/2058-6272/19/2/025501
    [8]Ali KHUMAENI, Wahyu Setia BUDI, Asep Yoyo WARDAYA, Rinda HEDWIG, Koo Hendrik KURNIAWAN. Rapid Detection of Oil Pollution in Soil by Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(12): 1186-1191. DOI: 10.1088/1009-0630/18/12/08
    [9]HE Li’ao (何力骜), WANG Qianqian (王茜蒨), ZHAO Yu (赵宇), LIU Li (刘莉), PENG Zhong (彭中). Study on Cluster Analysis Used with Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 647-653. DOI: 10.1088/1009-0630/18/6/11
    [10]W A FAROOQ, M ATIF, W TAWFIK, M S ALSALHI, Z A ALAHMED, M SARFRAZ, J P SINGH. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(12): 1141-1146. DOI: 10.1088/1009-0630/16/12/10
  • Cited by

    Periodical cited type(20)

    1. Wang, H., Zhang, P., Xu, Z. et al. An authenticity method for determining hybrid rice varieties using fusion of LIBS and NIRS. Microwave and Optical Technology Letters, 2023, 65(5): 1176-1185. DOI:10.1002/mop.33226
    2. Xu, X., Teng, G., Wang, Q. et al. Spectral preprocessing combined with feature selection improve model robustness for plastics samples classification by LIBS. Frontiers in Environmental Science, 2023. DOI:10.3389/fenvs.2023.1175392
    3. Wang, R., Ma, X. Study on LIBS Standard Method via Key Parameter Monitoring and Backpropagation Neural Network. Chemosensors, 2022, 10(8): 312. DOI:10.3390/chemosensors10080312
    4. Gu, W., Zhang, L., Dong, M. et al. A new stage of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2022, 24(8) DOI:10.1088/2058-6272/ac7e26
    5. Li, M., Fu, H., Du, Y. et al. Laser induced breakdown spectroscopy combined with hybrid variable selection for the prediction of the environmental risk Nemerow index of heavy metals in oily sludge. Journal of Analytical Atomic Spectrometry, 2022. DOI:10.1039/d2ja00048b
    6. Wang, Q., Qi, H., Zeng, X. et al. Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas. Plasma Science and Technology, 2021, 23(11): 115504. DOI:10.1088/2058-6272/ac183b
    7. Wu, H., Li, C., Wu, D. et al. Characterization of laser-induced breakdown spectroscopy on tungsten at variable ablation angles using a coaxial system in a vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2074-2084. DOI:10.1039/d1ja00196e
    8. Wang, Q., Chen, A., Liu, M. et al. Comparison of emission signals for different polarizations in femtosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(4): 045504. DOI:10.1088/2058-6272/abeb5d
    9. Zhang, D., Chen, A., Wang, Q. et al. Improvement of LIBS signal stability for NaCl solution using femtosecond laser-induced water film. Optics Express, 2021, 29(7): 9897-9906. DOI:10.1364/OE.415347
    10. Wang, R., Ma, X., Zhang, T. et al. Study on tea classification based on provenance via random forests and laser induced breakdown spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 2021. DOI:10.1117/12.2599051
    11. Shao, J., Guo, J., Wang, Q. et al. Influence of distance between focusing lens and sample surface on femtosecond laser-induced Cu plasma. Optik, 2020. DOI:10.1016/j.ijleo.2020.165137
    12. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7
    13. Liu, X., Che, X., Li, K. et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes. Plasma Science and Technology, 2020, 22(7): 074006. DOI:10.1088/2058-6272/ab7eda
    14. Feng, Z., Zhang, D., Wang, B. et al. The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods. Plasma Science and Technology, 2020, 22(7): 074012. DOI:10.1088/2058-6272/ab84ed
    15. Li, C., You, J., Wu, H. et al. Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum. Plasma Science and Technology, 2020, 22(7): 074008. DOI:10.1088/2058-6272/ab823d
    16. Zhao, M., Yan, C., Feng, Y. et al. A novel strategy for quantitative analysis of soil pH via laser-induced breakdown spectroscopy coupled with random forest. Plasma Science and Technology, 2020, 22(7): 074003. DOI:10.1088/2058-6272/ab6ac2
    17. Shao, J., Guo, J., Wang, Q. et al. Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy. Plasma Science and Technology, 2020, 22(7): 074001. DOI:10.1088/2058-6272/ab7901
    18. Li, X., Yang, Y., Li, G. et al. Accuracy improvement of quantitative analysis of calorific value of coal by combining support vector machine and partial least square methods in laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 074014. DOI:10.1088/2058-6272/ab8972
    19. Cao, Y., Kang, J., Chen, Y. et al. Temporal Profiles of Atomic Emissions in High-Repetition-Rate Laser-Ablation Spark-Induced Breakdown Spectroscopy | [高重复频率激光剥离-火花诱导击穿光谱中原子辐射的时域特性研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47(6): 0611002. DOI:10.3788/CJL202047.0611002
    20. Wang, Z., Deguchi, Y., Shiou, F. et al. Feasibility investigation for online elemental monitoring of iron and steel manufacturing processes using laser-induced breakdown spectroscopy. ISIJ International, 2020, 60(5): 971-978. DOI:10.2355/isijinternational.ISIJINT-2019-317

    Other cited types(0)

Catalog

    Article views (139) PDF downloads (396) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return