Advanced Search+
Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f
Citation: Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f

Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water

More Information
  • Received Date: March 12, 2018
  • In order to reduce the fluctuation of LIBS detection spectrum of liquid sample, the full-spectrum sum method and the internal standardization method is adopted, using an equal-RSD normalization algorithm to calibrate the detection spectrum. Experiment result shows that the full-spectrum sum method reduced the RSD of parallel samples of Cd and Cr to 9.4% and 11.06% from 28.32% and 31.93% respectively, yielded better overall calibration than the single- element internal standardization approach, thereby suggesting that the former method is convenient and effective for online calibration of LIBS for detection of aqueous heavy metals.
  • [1]
    Islam M S et al 2015 Ecol. Indicat. 48 282
    [2]
    Miziolek A W, Palleschi V and Schechter I 2006 Laser- Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge: Cambridge University Press)
    [3]
    Dong F Z et al 2012 Front. Phys. 7 679
    [4]
    Yayintas O T et al 2007 Environ. Monit. Assess. 127 389
    [5]
    Knecht M R and Sethi M 2009 Anal. Bioanal. Chem. 394 33
    [6]
    McGaw E A and Swain G M 2006 Anal. Chim. Acta 575 180
    [7]
    Motto-Ros V et al 2013 Spectrochim. Acta B 87 168
    [8]
    Lazic V et al 2005 Spectrochim. Acta B 60 1002
    [9]
    Díaz Pace D M et al 2006 Spectrochim. Acta B 61 929
    [10]
    Yang Y X et al 2017 Acta Opt. Sin. 37 1130001 (in Chinese)
    [11]
    Xiu J S et al 2011 Chin. J. Laser 38 815003 (in Chinese)
    [12]
    Hu L et al 2015 Plasma Sci. Technol. 17 699
    [13]
    Wang C L et al 2011 Chin. J. Laser 38 1115002 (in Chinese)
    [14]
    Jia Y et al 2018 Chin. J. Laser 1 13 (in Chinese)
    [15]
    Klus J et al 2016 Spectrochim. Acta B 126 6
    [16]
    Meng D S et al 2015 Plasma Sci. Technol. 17 632
    [17]
    Choi et al 2014 Appl. Spectrosc. 68 198
    [18]
    de Morais C P et al 2017 Microchem. J. 134 370
    [19]
    Yao S C et al 2015 Plasma Sci. Technol. 17 938
    [20]
    Sun L X and Yu H B 2009 Talanta 79 388
    [21]
    Body D and Chadwick B L 2001 Spectrochim. Acta B 56 725
    [22]
    Yin W B et al 2012 Spectrosc. Spect. Anal. 32 1355 (in Chinese)
    [23]
    Chen T B et al 2013 Appl. Laser 33 623 (in Chinese)
  • Related Articles

    [1]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [4]Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801
    [5]Ding LU (陆丁), Ziliang LI (李子良), Haibo SANG (桑海波), Baisong XIE (谢柏松). Delicate scale multipeak and flat-top structures of solitary waves in multi-component plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35002-035002. DOI: 10.1088/2058-6272/19/3/035002
    [6]Kalsoom AZRA, Muddasir ALI, Azhar HUSSAIN. Study of the O-mode in a relativistic degenerate electron plasma[J]. Plasma Science and Technology, 2017, 19(3): 35001-035001. DOI: 10.1088/2058-6272/19/3/035001
    [7]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]M. MAHDAVI, A. GHOLAMI. Ignition Conditions for Simulated Fuel Pellets in Degenerate Plasma[J]. Plasma Science and Technology, 2013, 15(4): 323-328. DOI: 10.1088/1009-0630/15/4/04

Catalog

    Article views (153) PDF downloads (413) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return