Advanced Search+
Libin LV (吕立斌), Zhensen WU (吴振森), Qingliang LI (李清亮), Shuji HAO (郝书吉), Jian DING (丁建), Guanglin MA (马广林), Jing CHEN (陈靓). Heating frequency optimization for artificial field-aligned scattering[J]. Plasma Science and Technology, 2019, 21(9): 95301-095301. DOI: 10.1088/2058-6272/ab1d46
Citation: Libin LV (吕立斌), Zhensen WU (吴振森), Qingliang LI (李清亮), Shuji HAO (郝书吉), Jian DING (丁建), Guanglin MA (马广林), Jing CHEN (陈靓). Heating frequency optimization for artificial field-aligned scattering[J]. Plasma Science and Technology, 2019, 21(9): 95301-095301. DOI: 10.1088/2058-6272/ab1d46

Heating frequency optimization for artificial field-aligned scattering

Funds: This work was supported by the Innovation Foundation of the China Electronics Technology Group Corporation (No. KJ1602004).
More Information
  • Received Date: December 17, 2018
  • Revised Date: April 09, 2019
  • Accepted Date: April 27, 2019
  • In this study, we present a simulation study of artificial field-aligned irregularities (AFAI) to calculate the scattering coefficient considering a Gaussian autocorrelation function for the wave number spectrum of the density fluctuation. By analyzing variations in the scattering coefficient under different ionospheric backgrounds, the optimal range of the heating frequency was found, which is about 0.9–1 times the critical frequency of the F2 layer. This is especially noticeable as when the heating frequency varies from 0.5 times to 0.9 times of the critical frequency, the scattering coefficient increases by 6.8–16.2 dB. These results should be useful for optimizing the heating frequency in the future artificial field-aligned scattering (AFAS) transmission applications at middle and low latitudes.
  • [1]
    Gurevich A V 2007 Phys.–Usp. 50 1091
    [2]
    Blagoveshchenskaya N F et al 2018 Cosmic Res. 56 11
    [3]
    Frolov V L et al 1997 J. Atmos. Solar-Terr. Phys. 59 2317
    [4]
    Galushko V G et al 2013 Radio Sci. 48 180
    [5]
    Vas’kov V V and Ryabova N A 2007 Radiophys. Quantum Electron. 50 167
    [6]
    Bryers C J et al 2013 J. Geophys. Res. Space Phys. 118 7472
    [7]
    Guzdar P N et al 1996 J. Geophys. Res. Space Phys. 101 2453
    [8]
    Kuo S P, Cheo B R and Lee M C 1983 J. Geophys. Res. Space Phys. 88 417
    [9]
    Perkins F W and Kaw P K 1971 J. Geophys. Res. 76 282
    [10]
    Wang X et al 2016 J. Geophys. Res. Space Phys. 121 3578
    [11]
    Wang X et al 2018 Plasma Sci. Technol. 20 115301
    [12]
    Fu H Y et al 2018 Geophys. Res. Lett. 45 9363
    [13]
    Zhang J, Fu H Y and Scales W 2018 IEEE Trans. Plasma Sci.46 2146
    [14]
    Lü L B et al 2017 Acta Phys. Sin. 66 059401 (in Chinese)
    [15]
    Fialer P A 1974 Radio Sci. 9 923
    [16]
    Carroll J C, Violette E J and Utlaut W F 1974 Radio Sci. 9 889
    [17]
    Thome G D and Blood D W 1974 Radio Sci. 9 917
    [18]
    Barry G H 1974 Radio Sci. 9 1025
    [19]
    Andreeva E S et al 2016 Radio Sci. 51 638
    [20]
    Borisova T D et al 2017 Radiophys. Quantum Electron. 60 273
    [21]
    Sheerin J P and Cohen M B 2015 AIP Conf. Proc. 1689 020003
    [22]
    Booker H G 1956 J. Atmos. Terr. Phys. 8 204
    [23]
    Rao P B and Thome G D 1974 Radio Sci. 9 987
    [24]
    Rawer K 1993 Wave Propagation in the Ionosphere (Berlin: Springer)

Catalog

    Article views (197) PDF downloads (165) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return