Advanced Search+
Hirotake SUGAWARA. Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields[J]. Plasma Science and Technology, 2019, 21(9): 94001-094001. DOI: 10.1088/2058-6272/ab20e0
Citation: Hirotake SUGAWARA. Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields[J]. Plasma Science and Technology, 2019, 21(9): 94001-094001. DOI: 10.1088/2058-6272/ab20e0

Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields

More Information
  • Received Date: January 29, 2019
  • Revised Date: May 05, 2019
  • Accepted Date: May 09, 2019
  • This paper presents a self-contained description on the configuration of propagator method (PM) to calculate the electron velocity distribution function (EVDF) of electron swarms in gases under DC electric and magnetic fields crossed at a right angle. Velocity space is divided into cells with respect to three polar coordinates v, θ and f. The number of electrons in each cell is stored in three-dimensional arrays. The changes of electron velocity due to acceleration by the electric and magnetic fields and scattering by gas molecules are treated as intercellular electron transfers on the basis of the Boltzmann equation and are represented using operators called the propagators or Green’s functions. The collision propagator, assuming isotropic scattering, is basically unchanged from conventional PMs performed under electric fields without magnetic fields. On the other hand, the acceleration propagator is customized for rotational acceleration under the action of the Lorentz force. The acceleration propagator specific to the present cell configuration is analytically derived. The mean electron energy and average electron velocity vector in a model gas and SF6 were derived from the EVDF as a demonstration of the PM under the Hall deflection and they were in a fine agreement with those obtained by Monte Carlo simulations. A strategy for fast relaxation is discussed, and extension of the PM for the EVDF under AC electric and DC/AC magnetic fields is outlined as well.
  • [1]
    Holstein T 1946 Phys. Rev. 70 367
    [2]
    Kumar K, Skullerud H R and Robson R E 1980 Aust. J. Phys.33 343
    [3]
    Yachi S, Kitamura Y, Kitamori K and Tagashira H 1988 J. Phys. D: Appl. Phys. 21 914
    [4]
    Yachi S, Date H, Kitamori K and Tagashira H 1991 J. Phys. D:Appl. Phys. 24 573
    [5]
    Boyle G J, Tattersall W J, Cocks D G, Dujko S and White S D 2015 Phys. Rev. A 91 052710
    [6]
    Boyle G J, McEachran R P, Cocks D G and White R D 2015 J. Chem. Phys. 142 154507
    [7]
    Boyle G J et al 2016 J. Phys. D: Appl. Phys. 49 355201
    [8]
    Drallos P J and Wadehra J M 1988 J. Appl. Phys. 63 5601
    [9]
    Drallos P J and Wadehra J M 1989 Phys. Rev. A 40 1967
    [10]
    Sommerer T J, Hitchon W N G, Harvey R E P and Lawler J E 1991 Phys. Rev. A 43 4452
    [11]
    Maeda K and Makabe T 1994 Japan. J. Appl. Phys. 33 4173
    [12]
    Shimada T, Nakamura Y, Petrović Z L J and Makabe T 2003 J. Phys. D: Appl. Phys. 36 1936
    [13]
    Sugawara H and Sakai Y 2003 J. Phys. D: Appl. Phys. 36 1994
    [14]
    Sommerer T J, Hitchon W N G and Lawler J E 1989 Phys. Rev.A 39 6356
    [15]
    Sugawara H, Sakai Y and Tagashira H 1992 J. Phys. D: Appl.Phys. 25 1483
    [16]
    Sugawara H, Sakai Y and Tagashira H 1994 J. Phys. D: Appl.Phys. 27 90
    [17]
    Sugawara H, Sakai Y and Tagashira H 1995 J. Phys. D: Appl.Phys. 28 61
    [18]
    Sugawara H, Tagashira H and Sakai Y 1997 J. Phys. D: Appl.Phys. 30 368
    [19]
    Sugawara H, Sakaidag Y, Tagashiraddag H and Kitamori K 1998 J. Phys. D: Appl. Phys. 31 319
    [20]
    Sugawara H and Sakai Y 1999 J. Phys. D: Appl. Phys. 32 1671
    [21]
    Sugawara H and Sakai Y 2006 Japan. J. Appl. Phys. 45 5189
    [22]
    Hitchon W N G, Koch D J and Adams J B 1989 J. Comput.Phys. 83 79
    [23]
    Tan W, Hoekstra R J and Kushner M J 1996 J. Appl. Phys.79 3423
    [24]
    Christlieb A J, Hitchon W N G, Lawler J E and Lister J E 2009 J. Phys. D: Appl. Phys. 42 194007
    [25]
    Wichaidit C, Hitchon W N G, Lawler J E and Lister G G 2009 J. Phys. D: Appl. Phys. 42 025202
    [26]
    Golubovskii Y B, Porokhova I A, Lange H, Gortchakov S and Uhrlandt D 2005 Plasma Sources Sci. Technol. 14 45
    [27]
    Golubovskii Y, Gorchakov S and Uhrlandt D 2013 Plasma Sources Sci. Technol. 22 023001
    [28]
    Fixel D A and Hitchon W N G 2007 J. Comput. Phys. 227 1387
    [29]
    Sugawara H 2017 Plasma Sources Sci. Technol. 26 044002
    [30]
    Sugawara H 2019 IEEE Trans. Plasma Sci. 47 1071
    [31]
    Sugawara H 2017 Proc. 10th Asia-Pacific Int. Symp. on the Basics and Applications of Plasma Technology (Taoyuan, Taiwan)
    [32]
    Sugawara H and Matsumoto S 2017 National Convention Record, Institute of Electrical Engineers of Japan (Toyama,Japan) (in Japanese)
    [33]
    Sugawara H 2017 Proc. 33rd Int. Conf. Phenomena in Ionized Gases (Estoril, Portugal)
    [34]
    Sugawara H 2018 Proc. 19th Asian Conf. on Electrical Discharge (Xianyang, Shaanxi, China)
    [35]
    Uchida T 1998 J. Vac Sci. Technol. A 16 1529
    [36]
    Uchida T and Hamaguchi S 2008 J. Phys. D: Appl. Phys. 41 083001
    [37]
    O’Connell D, Gans T, Crintea D L, Czarnetzki U and Sadeghi N 2008 Plasma Sources Sci. Technol. 17 024022
    [38]
    Sugawara H, Osaga T, Tsuboi H, Kuwahara K and Ogata S 2010 Japan. J. Appl. Phys. 49 086001
    [39]
    Osaga T, Sugawara H and Sakurai Y 2011 Plasma Sources Sci.Technol. 20 065003
    [40]
    Tsankov T and Czarnetzki U 2011 AIP Conf. Proc. 1390 140
    [41]
    Celik Y, Tsankov T and Czarnetzki U 2011 IEEE Trans.Plasma Sci. 39 2466
    [42]
    Tsankov T and Czarnetzki U 2011 IEEE Trans. Plasma Sci.39 2538
    [43]
    Tsankov T V, Toko K and Czarnetzki U 2012 Phys. Plasmas 19 123503
    [44]
    Sugawara H and Ogino S 2016 Japan. J. Appl. Phys. 55 07LD05
    [45]
    Sugawara H, Yahata T, Oda A and Sakai Y 2000 J. Phys. D:Appl. Phys. 33 1191
    [46]
    Reid I D 1979 Aust. J. Phys. 32 231
    [47]
    Itoh H, Miura Y, Ikuta N, Nakao Y and Tagashira H 1988 J. Phys. D: Appl. Phys. 21 922–30
    [48]
    Itoh H, Matsumura T, Satoh K, Date H, Nakao Y and Tagashira H 1993 J. Phys. D: Appl. Phys. 26 1975
    [49]
    Ness K F 1994 J. Phys. D: Appl. Phys. 27 1848
    [50]
    White R D, Brennan M J and Ness K F 1997 J. Phys. D: Appl.Phys. 30 810
    [51]
    Sugawara H 2018 Japan. J. Appl. Phys. 57 038001
    [52]
    Kitamori K, Tagashira H and Sakai Y 1980 J. Phys. D: Appl.Phys. 13 535
    [53]
    Raspopović Z, Sakadzic A, Petrovic Z L J and Makabe T 2000 J. Phys. D: Appl. Phys. 33 1298
    [54]
    White R D, Ness K F and Robson R E 2002 Appl. Surf. Sci.192 26
    [55]
    Dujko S, White R D, Petrović Z L Z and Robson R E 2011 Plasma Sources Sci. Technol. 20 024013
    [56]
    White R D, Ness K F, Robson R E and Li B 1999 Phys. Rev. E 60 2231
    [57]
    Dujko S, White R D, Ness K F, Petrović Z L J and Robson R E 2006 J. Phys. D: Appl. Phys. 39 4788
    [58]
    Dujko S, White R D, Petrović Z L J and Robson R E 2010 Phys. Rev. E 81 046403
  • Related Articles

    [1]Xinjing CAI (蔡新景), Xinxin WANG (王新新), Xiaobing ZOU (邹晓兵). Electron relaxation properties of Ar magnetron plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35405-035405. DOI: 10.1088/2058-6272/aaa3d6
    [2]Ruggero BARNI, Stefano CALDIROLA, Luca FATTORINI, Claudia RICCARDI. Tomography of a simply magnetized toroidal plasma[J]. Plasma Science and Technology, 2018, 20(2): 25102-025102. DOI: 10.1088/2058-6272/aa9028
    [3]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [4]HU Guanghai (胡广海), JIN Xiaoli (金晓丽), YUAN Lin (袁林), ZHANG Qiaofeng (张乔枫), XIE Jinlin (谢锦林), LI Hong (李弘), LIU Wandong (刘万东). Oxide Coated Cathode Plasma Source of Linear Magnetized Plasma Device[J]. Plasma Science and Technology, 2016, 18(9): 918-923. DOI: 10.1088/1009-0630/18/9/08
    [5]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [6]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [7]YUAN Yuan(袁媛), JIANG Zhonghe(江中和), GUO Weixin(郭伟欣), SUN Xinfeng(孙新锋), HU Xiwei(胡希伟). Mode-Coupling Analysis of Parametric Decay Instability in Magnetized Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 809-814. DOI: 10.1088/1009-0630/16/9/01
    [8]ZHAO Qing(赵青), XING Xiaojun(邢晓俊), XUAN Yinliang(宣银良), LIU Shuzhang(刘述章). The Influence of Magnetic Field on Antenna Performance in Plasma[J]. Plasma Science and Technology, 2014, 16(6): 614-619. DOI: 10.1088/1009-0630/16/6/14
    [9]LI Jiajia, HU Zhanghu, SONG Yuanhong, WANG Younian. Effects of Fast-Ion Injection on a Magnetized Sheath near a Floating Wall[J]. Plasma Science and Technology, 2013, 15(1): 1-6. DOI: 10.1088/1009-0630/15/1/01
    [10]HU Zhidan(胡志丹), SHENG Zhengming (盛政明), Ding Wenjun (丁文君), WANG Weimin (王伟民), DONG Quanli (董全力), ZHANG Jie(张杰), et al. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas[J]. Plasma Science and Technology, 2012, 14(10): 874-879. DOI: 10.1088/1009-0630/14/10/04
  • Cited by

    Periodical cited type(8)

    1. Makabe, T., Sugawara, H. Historical development of electron swarm physics based on the Boltzmann equation towards in-depth understanding of a low-temperature collisional plasma. Plasma Sources Science and Technology, 2024, 33(9): 093001. DOI:10.1088/1361-6595/ad75b6
    2. Vialetto, L., Sugawara, H., Longo, S. Particle Propagation and Electron Transport in Gases. Plasma, 2024, 7(1): 121-145. DOI:10.3390/plasma7010009
    3. Kim, J.S., Denpoh, K., Kawaguchi, S. et al. Numerical strategy for solving the Boltzmann equation with variable E/N using physics-informed neural networks. Journal of Physics D: Applied Physics, 2023, 56(34): 344002. DOI:10.1088/1361-6463/accbcf
    4. Anirudh, R., Archibald, R., Asif, M.S. et al. 2022 Review of Data-Driven Plasma Science. IEEE Transactions on Plasma Science, 2023, 51(7): 1750-1838. DOI:10.1109/TPS.2023.3268170
    5. Kambara, M., Kawaguchi, S., Lee, H.J. et al. Science-based, data-driven developments in plasma processing for material synthesis and device-integration technologies. Japanese Journal of Applied Physics, 2023, 62(SA): SA0803. DOI:10.35848/1347-4065/ac9189
    6. Kawaguchi, S., Murakami, T. Physics-informed neural networks for solving the Boltzmann equation of the electron velocity distribution function in weakly ionized plasmas. Japanese Journal of Applied Physics, 2022, 61(8): 086002. DOI:10.35848/1347-4065/ac7afb
    7. Sugawara, H., Iwamoto, H. A technology demonstration of propagator matrix power method for calculation of electron velocity distribution functions in gas in long-term transient and succeeding equilibrium states under dc electric fields. Japanese Journal of Applied Physics, 2021, 60(4): 046001. DOI:10.35848/1347-4065/abe8a7
    8. Sugawara, H.. Derivation of the electron drift velocity vector in gas under crossed ac electric and dc magnetic fields assuming constant-collision-frequency models. Japanese Journal of Applied Physics, 2019, 58(10): 108002. DOI:10.7567/1347-4065/ab3e5d

    Other cited types(0)

Catalog

    Article views (229) PDF downloads (428) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return