Advanced Search+
Jingjing LIU (柳晶晶), Dong CHEN (陈东), Yijian MO (莫益健), Yi RONG (荣一). Electrical and optical characteristics of atmospheric helium jet array plasma[J]. Plasma Science and Technology, 2019, 21(11): 115403. DOI: 10.1088/2058-6272/ab2b5a
Citation: Jingjing LIU (柳晶晶), Dong CHEN (陈东), Yijian MO (莫益健), Yi RONG (荣一). Electrical and optical characteristics of atmospheric helium jet array plasma[J]. Plasma Science and Technology, 2019, 21(11): 115403. DOI: 10.1088/2058-6272/ab2b5a

Electrical and optical characteristics of atmospheric helium jet array plasma

Funds: This work was supported by the Training Plan for Outstanding Young Teachers in Colleges and Universities of Guangdong Province (YQ2015123).
More Information
  • Received Date: February 26, 2019
  • Revised Date: June 04, 2019
  • Accepted Date: June 19, 2019
  • In this paper, a honeycomb structure jet array with seven jet units was adopted to generate plasmas. Both the average discharge power and the emission intensity of the main excited species increase with increasing applied voltage. There are three stages of discharge evolution at different applied voltages: initial discharge, uniform discharge and strong coupling discharge. The spatial distribution of the emission intensity of the excited species can be divided into three categories: growth class, weakening class and variation class. The gas temperature along the whole plasma plume at different applied voltages is maintained at around 320 K and can be widely used in heat-labile applications.
  • [1]
    Shao T et al 2016 High Volt. Eng. 42 685 (in Chinese)
    [2]
    Zhou Y D, Fang Z and Wu W J 2014 Chin. J. Vac. Sci.Technol. 34 1294 (in Chinese)
    [3]
    Chen S L et al 2017 Appl. Surf. Sci. 414 107
    [4]
    Dai D, Ning W J and Shao T 2017 Trans. China Electrotechn.Soc. 32 1 (in Chinese)
    [5]
    Nie Q Y et al 2009 New J. Phys. 11 115015
    [6]
    Reuter S, von Woedtke T and Weltmann K D 2018 J. Phys. D:Appl. Phys. 51 233001
    [7]
    Fang Z, Zhang B and Ruan C 2016 High Volt Eng. 42 1151 (in Chinese)
    [8]
    Fang Z et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2288
    [9]
    Shen Y et al 2016 High Power Laser Part. Beams 28 055001 (in Chinese)
    [10]
    Wu S Q et al 2016 IEEE Trans. Plasma Sci. 44 2632
    [11]
    Li D et al 2016 IEEE Trans. Plasma Sci. 44 2648
    [12]
    Liu J F, Fang Z and Zhou Y D 2014 High Volt. Eng. 40 1214 (in Chinese)
    [13]
    Chen B Y et al 2016 IEEE Trans. Plasma Sci. 44 3369
    [14]
    Fang Z et al 2017 High Volt. Eng. 43 1775 (in Chinese)
    [15]
    Li D et al 2016 J. Phys. D: Appl. Phys. 49 455202
    [16]
    Wang R X et al 2017 Phys. Plasmas 24 093507
    [17]
    Gerber I C et al 2017 Appl. Sci. 7 812
    [18]
    Gazeli K et al 2013 J. Appl. Phys. 114 103304
    [19]
    Ding Z F, Fang Z and Xu J 2016 Trans. China Electrotechn.Soc. 31 159 (in Chinese)
    [20]
    Wang R X et al 2016 IEEE Trans. Plasma Sci. 44 393
    [21]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [22]
    Fang Z et al 2014 High Volt. Eng. 40 2049 (in Chinese)
    [23]
    Zhang C et al 2014 Appl. Phys. Lett. 105 044102
    [24]
    Nikiforov A et al 2016 J. Phys. D: Appl. Phys. 49 204002
    [25]
    Zhou Y X, Fang Z and Shao T 2014 Trans. China Electrotechn. Soc. 29 229 (in Chinese)
    [26]
    Yan D Y, Sherman J H and Keidar M 2017 Oncotarget 8 15977
    [27]
    Li L et al 2016 Appl. Surf. Sci. 362 348
    [28]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
    [29]
    Hu J T et al 2012 Phys. Plasmas 19 063505
    [30]
    Kim J Y, Ballato J and Kim S O 2012 Plasma Process. Polym.9 253
    [31]
    Liu F et al 2018 J. Vac. Sci. Technol. A 36 061302
    [32]
    Qazi H I A et al 2018 Plasma Sci. Technol. 20 075403
    [33]
    Ruan C et al 2017 Trans. China Electrotechn. Soc. 32 82 (in Chinese)
    [34]
    Kim S O et al 2012 Appl. Phys. Lett. 101 173503
    [35]
    do Nascimento F et al 2017 Eur. Phys. J. D 71 274
  • Related Articles

    [1]Shuang LI, Xinzheng GUO, Yongqiang FU, Jianjun LI, Ruobing ZHANG. Hydrophobicity changes of polluted silicone rubber introduced by spatial and dose distribution of plasma jet[J]. Plasma Science and Technology, 2022, 24(4): 044006. DOI: 10.1088/2058-6272/ac57ff
    [2]Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46
    [3]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Gailing ZHANG (张改玲), Chunsheng REN (任春生). Effects of direct current discharge on the spatial distribution of cylindrical inductivelycoupled plasma at different gas pressures[J]. Plasma Science and Technology, 2018, 20(1): 14005-014005. DOI: 10.1088/2058-6272/aa8ea8
    [4]Ruobing ZHANG (张若兵), Qianting HAN (韩倩婷), Yan XIA (夏衍), Shuang LI (李爽). Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber[J]. Plasma Science and Technology, 2017, 19(10): 105505. DOI: 10.1088/2058-6272/aa7c16
    [5]Bo ZHANG (张波), Ying ZHU (朱颖), Feng LIU (刘峰), Zhi FANG (方志). The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19(6): 64001-064001. DOI: 10.1088/2058-6272/aa629f
    [6]YANG Lanlan (杨兰兰), TU Yan (屠彦), YU Yongbo (俞永波), HU Dinglan (户玎岚), ZHANG Xiong (张雄). Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet[J]. Plasma Science and Technology, 2016, 18(9): 912-917. DOI: 10.1088/1009-0630/18/9/07
    [7]XU Xiufeng (徐修峰), LI Shiping (李世平), CAO Hongrui (曹宏睿), XIAO Rui (肖锐), et al.. A Simulation Study on the Flash X-Ray Spectra Spatial Distribution[J]. Plasma Science and Technology, 2013, 15(11): 1165-1168. DOI: 10.1088/1009-0630/15/11/16
    [8]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [9]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
    [10]FEI Xiaomeng(费小猛), Shin-ichi KURODA, Yuki KONDO, Tamio MORI, Katsuhiko HOSOI. Influence of Additive Gas on Electrical and Optical Characteristics of Non- equilibrium Atmospheric Pressure Argon Plasma Jet[J]. Plasma Science and Technology, 2011, 13(5): 575-582.
  • Cited by

    Periodical cited type(4)

    1. Li, H., Liang, Z., Wang, F. et al. Design of a nozzle structure for uniform distribution of active substances in plasma jet honeycomb array configuration. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2025, 43(2): 023006. DOI:10.1116/6.0003993
    2. Shi, B., Wang, M., Li, P. et al. Experimental Investigation on Atmospheric Pressure Plasma Jet under Locally Divergent Magnet Field. Energies, 2023, 16(6): 2512. DOI:10.3390/en16062512
    3. Li, H., Li, M., Zhu, H. et al. Realizing high efficiency and large-area sterilization by a rotating plasma jet device. Plasma Science and Technology, 2022, 24(4): 045501. DOI:10.1088/2058-6272/ac550d
    4. Zhu, H., Guo, L., Li, M. et al. Comparison of spatial distribution of active substances and sterilization range generated by array of printed-circuit-board plasma jets. Vacuum, 2021. DOI:10.1016/j.vacuum.2020.109982

    Other cited types(0)

Catalog

    Article views (160) PDF downloads (279) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return