Citation: | Shuang LI, Xinzheng GUO, Yongqiang FU, Jianjun LI, Ruobing ZHANG. Hydrophobicity changes of polluted silicone rubber introduced by spatial and dose distribution of plasma jet[J]. Plasma Science and Technology, 2022, 24(4): 044006. DOI: 10.1088/2058-6272/ac57ff |
The hydrophobicity of polluted silicone rubber was improved rapidly under plasma jet treatment. It is an important phenomenon of the interaction between the plasma jet and the porous surface, and shows a wide application prospect in the power system. In this process, the spatial characteristics and dose of plasma jet are very important. Therefore, the variation of hydrophobicity of polluted silicone rubber under plasma jet treatment was studied, and the spatial characteristics and dose of plasma jet on polluted silicone rubber were also investigated in the work. The results show that the surface property (hydrophilic or hydrophobic) depended on the dose of plasma applied to the surface. The effective treated area was a circle, and the contact angles changed along the radial direction of the circle. This was attributable to the diffusion of plasma bullets on the surface and the distribution of plasma species. The plasma dose could be characterized by the energy density of the plasma applied on the surface. With the increase of plasma dose, the surface contact angles first increased rapidly and then decreased gradually.
The work was supported by the Intergovernmental International Cooperation in Science and Technology Innovation Program (No. 2019YFE0115600), National Natural Science Foundation of China (No. 52177152), and Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180508152057527).
[1] |
Donnelly V M and Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825 doi: 10.1116/1.4819316
|
[2] |
Ran H J et al 2021 Plasma Sci. Technol. 23 095502 doi: 10.1088/2058-6272/ac050d
|
[3] |
Hou W Q et al 2020 Colloids Surf. A: Physicochem. Eng. Asp. 586 124180 doi: 10.1016/j.colsurfa.2019.124180
|
[4] |
Lee J et al 2020 Plasma Sci. Technol. 22 105505 doi: 10.1088/2058-6272/ab9b5a
|
[5] |
Múgica-Vidal R et al 2021 Plasma Process. Polym. 18 2100046 doi: 10.1002/ppap.202100046
|
[6] |
Siddig E A A et al 2020 Plasma Sci. Technol. 22 055503 doi: 10.1088/2058-6272/ab65dd
|
[7] |
Thompson R et al 2021 Appl. Surf. Sci. 544 148929 doi: 10.1016/j.apsusc.2021.148929
|
[8] |
Chen T H et al 2021 Vacuum 186 110069 doi: 10.1016/j.vacuum.2021.110069
|
[9] |
Wu S L et al 2020 High Volt. 5 15 doi: 10.1049/hve.2019.0144
|
[10] |
Zhang R B et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 377 doi: 10.1109/TDEI.2015.005117
|
[11] |
Zhang R B et al 2017 Plasma Sci. Technol. 19 105505 doi: 10.1088/2058-6272/aa7c16
|
[12] |
Jia Z D et al 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1317 doi: 10.1109/TDEI.2006.258203
|
[13] |
Hergert A et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1057 doi: 10.1109/TDEI.2017.006146
|
[14] |
Li S et al 2019 IEEE Trans. Dielectr. Electr. Insul. 26 416 doi: 10.1109/TDEI.2018.007732
|
[15] |
Li S et al 2021 High Volt. ( https://doi.org/10.1049/hve2.12122)
|
[16] |
Dobrynin D et al 2009 New J. Phys. 11 115020 doi: 10.1088/1367-2630/11/11/115020
|
[17] |
Cheng H et al 2020 Phys. Plasmas 27 063514 doi: 10.1063/5.0008881
|
[18] |
Walther F et al 2007 J. Micromech. Microeng. 17 524 doi: 10.1088/0960-1317/17/3/015
|
[19] |
Fang Z, Qiu Y and Kuffel E 2004 J. Phys. D: Appl. Phys. 37 2261 doi: 10.1088/0022-3727/37/16/007
|
[20] |
Nania M, Matar O K and Cabral J T 2015 Soft Matter 11 3067 doi: 10.1039/C4SM02840F
|
[21] |
Görrn P and Wagner S 2010 J. Appl. Phys. 108 093522 doi: 10.1063/1.3482020
|
[22] |
Gidon D, Graves D B and Mesbah A 2019 Plasma Sources Sci. Technol. 28 085001 doi: 10.1088/1361-6595/ab2c66
|
[23] |
Teschke M et al 2005 IEEE Trans. Plasma Sci. 33 310 doi: 10.1109/TPS.2005.845377
|
[24] |
Chang Z S et al 2018 Sci. Rep. 8 7599 doi: 10.1038/s41598-018-25962-z
|
[25] |
Xian Y B et al 2014 Plasma Process. Polym. 11 1169 doi: 10.1002/ppap.201400126
|
[1] | Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c |
[2] | Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111 |
[3] | Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547 |
[4] | Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62 |
[5] | Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903 |
[6] | Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04 |
[7] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[8] | LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08 |
[9] | N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07 |
[10] | ZHANG Hong(张虹), JI Tianyi(纪天一), ZHANG Renxi(张仁熙), HOU Huiqi(侯惠奇). Destruction of H2S gas with a Combined Plasma Photolysis (CPP) reactor[J]. Plasma Science and Technology, 2012, 14(2): 134-139. DOI: 10.1088/1009-0630/14/2/10 |