Advanced Search+
Jie YANG (阳杰), Zhipeng CHEN (陈志鹏), Hai LIU (刘海), Tong WANG (王通), Mingcong ZHU (朱明聪), Zebao SONG (宋泽豹), Zhijiang WANG (王之江), Ge ZHUANG (庄革), Yonghua DING (丁永华), the J-TEXT Team. The application of limiter target electrostatic measurement system in J-TEXT tokamak[J]. Plasma Science and Technology, 2019, 21(10): 105105. DOI: 10.1088/2058-6272/ab2e7f
Citation: Jie YANG (阳杰), Zhipeng CHEN (陈志鹏), Hai LIU (刘海), Tong WANG (王通), Mingcong ZHU (朱明聪), Zebao SONG (宋泽豹), Zhijiang WANG (王之江), Ge ZHUANG (庄革), Yonghua DING (丁永华), the J-TEXT Team. The application of limiter target electrostatic measurement system in J-TEXT tokamak[J]. Plasma Science and Technology, 2019, 21(10): 105105. DOI: 10.1088/2058-6272/ab2e7f

The application of limiter target electrostatic measurement system in J-TEXT tokamak

Funds: This work is supported by the National Magnetic Confinement Fusion Science Program of China (No. 2015GB111001) and National Natural Science Foundation of China (Nos. 11305070, 11505069).
More Information
  • Received Date: May 10, 2019
  • Revised Date: June 30, 2019
  • Accepted Date: July 01, 2019
  • The limiter target electrostatic measurement system including limiter grounding current sensors and Langmuir probes have been newly developed for the measurement of the limiter target area on the Joint-Texas Experimental tokamak (J-TEXT). Current sensors fixed between graphite limiters and the vacuum vessel walls are used to measure the currents between limiters and vessel wall. Simultaneously, a rectangular poloidal array containing 54 Langmuir probes is embedded in the graphite tiles of limiters for a more localized measurement. Based on this system, the effect of both the plasma’s inherent behavior, including plasma motion and the 2/1 tearing mode, and the electrode biasing on probe and sensor signals have been observed and analyzed in the experiments.
  • [1]
    Matthews G F 1994 Plasma Phys. Control. Fusion 36 1595
    [2]
    Pitcher C S and Stangeby P C 1997 Plasma Phys. Control.Fusion 39 779
    [3]
    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Boca Raton, FL: CRC Press)
    [4]
    Zhuang G et al 2011 Nucl. Fusion 51 094020
    [5]
    Zhu M Z et al 2011 Chin. Phys. B 20 025204
    [6]
    Chen Z P et al 2012 Plasma Sci. Technol. 14 1041
    [7]
    Yang Z J et al 2012 Rev. Sci. Instrum. 83 10E313
    [8]
    Chen J et al 2014 Rev. Sci. Instrum. 85 11D303
    [9]
    Sun Y et al 2014 Plasma Phys. Control. Fusion 56 015001
    [10]
    Sun Y et al 2016 Nucl. Fusion 56 046006
    [11]
    Zhu T Z et al 2014 Rev. Sci. Instrum. 85 053504
    [12]
    LaBombard B and Lipschultz B 1987 Nucl. Fusion 27 81
    [13]
    Takahashi H et al 2004 Nucl. Fusion 44 1075
    [14]
    Van Oost G et al 2007 Plasma Phys. Control. Fusion 49 A29
    [15]
    Van Oost G et al 2003 Plasma Phys. Control. Fusion 45 621
    [16]
    Wang N C et al 2019 Nucl. Fusion (https://doi.org/10.1088/1741-4326/ab2d03)
    [17]
    Liang Y et al 2013 Phys. Rev. Lett. 110 235002
    [18]
    Joseph I 2009 Phys. Plasmas 16 052511
    [19]
    Howling A A and Robinson D C 1988 Plasma Phys. Control.Fusion 30 1863
    [20]
    Ding B J et al 2004 Plasma Phys. Control. Fusion 46 1467
    [21]
    dos Santos Lima G Z et al 2009 Phys. Plasmas 16 042508
    [22]
    Harley T R et al 1989 Nucl. Fusion 29 771
  • Related Articles

    [1]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Jianyuan XIAO (肖建元), Hong QIN (秦宏), Jian LIU (刘健). Structure-preserving geometric particle-in- cell methods for Vlasov-Maxwell systems[J]. Plasma Science and Technology, 2018, 20(11): 110501. DOI: 10.1088/2058-6272/aac3d1
    [4]Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Jinjun WANG (王进君), Guofeng LI (李国锋). Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis[J]. Plasma Science and Technology, 2018, 20(5): 54019-054019. DOI: 10.1088/2058-6272/aaa195
    [5]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [6]Danijela VUJOŠEVIC, Uroš CVELBAR, Urška REPNIK, Martina MODIC, Saša LAZOVIC, Tina ZAVAŠNIK-BERGANT, Nevena PUAC, Boban MUGOŠA, Evangelos GOGOLIDES, Zoran Lj PETROVIC, Miran MOZETIC. Plasma effects on the bacteria Escherichia coli via two evaluation methods[J]. Plasma Science and Technology, 2017, 19(7): 75504-075504. DOI: 10.1088/2058-6272/aa656b
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]JIANG Lina(姜丽娜), WANG Hongyu(王虹宇), SUN Peng(孙鹏). The Single Particle Theory of Backward-Wave Amplifications Based on Electron Cyclotron Maser with a Rectilinear Beam[J]. Plasma Science and Technology, 2014, 16(1): 12-16. DOI: 10.1088/1009-0630/16/1/03
    [9]KONG Lingbao (孔令宝), WANG Hongyu (王虹宇), HOU Zhiling (侯志灵), JIN Haibo (金海波). The Self-Consistent Nonlinear Theory of Charged Particle Beam Acceleration by Slowed Circularly Polarized Electromagnetic Waves[J]. Plasma Science and Technology, 2013, 15(12): 1174-1177. DOI: 10.1088/1009-0630/15/12/02
    [10]DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02
  • Cited by

    Periodical cited type(14)

    1. Chen, H., Chen, W. On fast-ion transport induced by edge localized modes. Nuclear Fusion, 2025, 65(3): 036028. DOI:10.1088/1741-4326/adb0df
    2. Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535
    3. Zhang, Y.-N., He, K.-Y., Sun, Y.-W. et al. Influence of the far non-resonant components of high-n resonant magnetic perturbations on energetic passing ions loss. Nuclear Fusion, 2024, 64(4): 046012. DOI:10.1088/1741-4326/ad249e
    4. Zocco, A., Mishchenko, A., Könies, A. et al. Nonlinear drift-wave and energetic particle long-time behaviour in stellarators: Solution of the kinetic problem. Journal of Plasma Physics, 2023, 89(3): 905890307. DOI:10.1017/S002237782300048X
    5. Bierwage, A., Shinohara, K., Kazakov, Y.O. et al. Energy-selective confinement of fusion-born alpha particles during internal relaxations in a tokamak plasma. Nature Communications, 2022, 13(1): 3941. DOI:10.1038/s41467-022-31589-6
    6. Rhee, T., Kim, J., Kim, K. et al. Simulation study of fast ion losses associated with the rotating n = 1 resonant magnetic perturbations in KSTAR. Nuclear Fusion, 2022, 62(6): 066028. DOI:10.1088/1741-4326/ac5e28
    7. Zhu, X., Wang, F., Chen, W. et al. Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma. Plasma Science and Technology, 2022, 24(2): 025102. DOI:10.1088/2058-6272/ac41be
    8. Hu, Y., Xu, Y., Hao, B. et al. Effects of resonant magnetic perturbations on neutral beam heating in a tokamak. Physics of Plasmas, 2021, 28(12): 122502. DOI:10.1063/5.0069792
    9. Qiu, Z., Chen, L., Zonca, F. et al. Evidence of 'two plasmon' decay of energetic particle induced geodesic acoustic mode. New Journal of Physics, 2021, 23(6): 063045. DOI:10.1088/1367-2630/ac047a
    10. Sanchis, L., Garcia-Munoz, M., Viezzer, E. et al. Optimizing beam-ion confinement in ITER by adjusting the toroidal phase of the 3D magnetic fields applied for ELM control. Nuclear Fusion, 2021, 61(4): 046006. DOI:10.1088/1741-4326/abdfdd
    11. White, R., Bierwage, A. Particle resonances in toroidal fusion devices. Physics of Plasmas, 2021, 28(3): 032507. DOI:10.1063/5.0040975
    12. Yu, L., Xue, E., Zhang, D. et al. Simulation of the loss of passing fast ions induced by magnetic islands in EAST tokamak plasmas. AIP Advances, 2021, 11(2): 025020. DOI:10.1063/5.0032049
    13. Yang, Y.R., Chen, W., Ye, M.Y. et al. Hybrid simulations of reversed shear Alfven eigenmodes and related nonlinear resonance with fast ions in a tokamak plasma. Nuclear Fusion, 2020, 60(10): 106012. DOI:10.1088/1741-4326/aba673
    14. Heidbrink, W.W., White, R.B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Physics of Plasmas, 2020, 27(3): 030901. DOI:10.1063/1.5136237

    Other cited types(0)

Catalog

    Article views (159) PDF downloads (149) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return