Advanced Search+
DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02
Citation: DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02

Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats

Funds: supported by National Natural Science Foundation of China (Nos.51237006, 10905047)
More Information
  • Received Date: April 08, 2012
  • The high-pressure shock wave data obtained in underground nuclear tests and high- power laser experiments are analyzed using a three-term equation of state and the Hugoniot relationship. Apart from the good agreement of the predicted results with experimental data related to samples Pb, Cu, and Au, an obvious deviation of the experimental data of the Fe sample from the corresponding numerical ones is found, and various comparisons of the data imply that the errors are likely to occur in the measurement rather than in the theoretical prediction. Plentiful data pertaining to a set of metal materials on shock adiabats reveal that there exists an asymptotic parabolic relationship between shock pressure or temperature and particle velocity for very strong shock waves, in contrast to the experimentally well-known linear relationship between shock wave velocity and particle velocity. All these are expounded physically in detail.
  • Related Articles

    [1]Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Xiong DENG, Yinxin ZHU. Experimental and numerical study on double wedge shock/shock interaction controlled by a single-pulse plasma synthetic jet[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad91e9
    [2]Yiwen LI (李益文), Zhong ZHUANG (庄重), Lei PANG (庞磊), Pengzhen DUAN (段朋振), Zhiwen DING (丁志文), Bailing ZHANG (张百灵). Experimental study on nanosecond pulsed pin-to-plate discharge in supersonic air flow[J]. Plasma Science and Technology, 2019, 21(6): 65502-065502. DOI: 10.1088/2058-6272/ab01f5
    [3]Bin WU (武斌), Chao GAO (高超), Feng LIU (刘峰), Ming XUE (薛明), Yushuai WANG (王玉帅), Borui ZHENG (郑博睿). Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 45501-045501. DOI: 10.1088/2058-6272/aaf2e2
    [4]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [5]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [6]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [7]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [8]YU Jianyang(俞建阳), LIU Huaping(刘华坪), XU Dimeng(徐迪孟), CHEN Fu(陈浮). Investigation of the DBD Plasma Effect on Flat Plate Flow[J]. Plasma Science and Technology, 2014, 16(3): 197-202. DOI: 10.1088/1009-0630/16/3/05
    [9]SUN Quan (孙权), CHENG Bangqin (程邦勤), LI Yinghong (李应红), CUI Wei (崔巍), et al.. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation[J]. Plasma Science and Technology, 2013, 15(11): 1136-1143. DOI: 10.1088/1009-0630/15/11/11
    [10]SUN Quan (孙权), CHENG Bangqin (程邦勤), LI Yinghong (李应红), CUI Wei (崔巍), et al.. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction[J]. Plasma Science and Technology, 2013, 15(9): 908-914. DOI: 10.1088/1009-0630/15/9/15

Catalog

    Article views (231) PDF downloads (1518) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return