Advanced Search+
Bin ZHU (朱斌), Luyao ZHANG (张璐瑶), Yan YAN (闫妍), Meng LI (李猛), Yimin ZHU (朱益民). Enhancing toluene removal in a plasma photocatalytic system through a black TiO2 photocatalyst[J]. Plasma Science and Technology, 2019, 21(11): 115503. DOI: 10.1088/2058-6272/ab3668
Citation: Bin ZHU (朱斌), Luyao ZHANG (张璐瑶), Yan YAN (闫妍), Meng LI (李猛), Yimin ZHU (朱益民). Enhancing toluene removal in a plasma photocatalytic system through a black TiO2 photocatalyst[J]. Plasma Science and Technology, 2019, 21(11): 115503. DOI: 10.1088/2058-6272/ab3668

Enhancing toluene removal in a plasma photocatalytic system through a black TiO2 photocatalyst

Funds: This work is supported by National Natural Science Foundation of China (No. 21808024) and Fundamental Research Funds for the Central Universities (DMU 3132018175).
More Information
  • Received Date: May 07, 2019
  • Revised Date: July 28, 2019
  • Accepted Date: July 28, 2019
  • An efficient toluene removal in air using a plasma photocatalytic system (PPS) not only needs favorable surface reactions over photocatalysts under the action of plasma, but also requires the photocatalysts to efficiently absorb light emitted from the discharge for driving the photocatalytic reactions. We report here that the PPS constructed by integrating a black titania (B-TiO2) photocatalyst with a dielectric barrier discharge (DBD) can effectively remove toluene with above 70% CO2 selectivity and remarkably reduced the concentration of secondary pollutants of ozone and nitrogen oxides at a specific energy input of 1500 J·l−1, while exhibiting good stability. Photocatalyst characterizations suggest that the B-TiO2 provides a high concentration of oxygen vacancies for the surface oxidation of toluene in DBD, and efficiently absorbs ultraviolet–visible light emitted from the discharge to induce plasma photocatalytic oxidation of toluene. The presence of B-TiO2 in the plasma region also results in a high discharge efficiency, facilitating the generation of large numbers of reactive species and thus the oxidation of toluene towards CO2. The greatly enhanced performance of the PPS integrated with B-TiO2 in toluene removal offers a promising approach to efficiently remove refractory volatile organic compounds from air at low temperatures.
  • [1]
    Van Durme J et al 2008 Appl. Catal. B: Environ. 78 324
    [2]
    Chen H L et al 2008 Appl. Catal. B: Environ. 85 1
    [3]
    Tu X and Whitehead J C 2012 Appl. Catal. B: Environ.125 439
    [4]
    Wu J L et al 2013 Plasma Chem. Plasma Process. 33 1073
    [5]
    Wang J T et al 2016 Plasma Sci. Technol. 18 370
    [6]
    Chen H L et al 2009 Environ. Sci. Technol. 43 2216
    [7]
    Huang H B et al 2007 Plasma Chem. Plasma Process. 27 577
    [8]
    Ochiai T et al 2012 Chem. Eng. J. 209 313
    [9]
    Wang H J and Chen X Y 2011 J. Hazard. Mater. 186 1888
    [10]
    Deng X Q et al 2016 Appl. Catal. B: Environ. 188 48
    [11]
    Sun Z G et al 2018 Plasma Process. Polym. 15 1800095
    [12]
    Liu X Y et al 2016 Adv. Energy Mater. 6 1600452
    [13]
    Yang C Y et al 2013 J. Am. Chem. Soc. 135 17831
    [14]
    Li X S et al 2019 Catal. Today (https://doi.org/10.1016/j.cattod.2019.03.033)
    [15]
    Sun Z G et al 2019 J. Catal. 375 380
    [16]
    Deng X Q et al 2017 Catal. Today 281 630
    [17]
    Fan X et al 2009 Chemosphere 75 1301
    [18]
    Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
    [19]
    Ráhel J and Sherman D M 2005 J. Phys. D: Appl. Phys. 38 547
    [20]
    Li M et al 2018 Plasma Chem. Plasma Process. 38 1063
    [21]
    Li M et al 2019 Appl. Phys. Lett. 114 114102
    [22]
    Wang Z et al 2013 Energy Environ. Sci. 6 3007
    [23]
    Wang Z et al 2013 Adv. Funct. Mater. 23 5444
    [24]
    Zhu B et al 2017 Top. Catal. 60 914
    [25]
    Zhu B et al 2015 Appl. Catal. B: Environ. 179 69
    [26]
    Zhu B et al 2018 Plasma Process. Polym. 15 1700215
    [27]
    Zhao D Z et al 2011 Chem. Eng. Sci. 66 3922
    [28]
    Fan H Y et al 2012 Appl. Catal. B: Environ. 119–120 49
    [29]
    Xu X X et al 2016 Chem. Eng. J. 283 276
  • Related Articles

    [1]Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03

Catalog

    Article views (164) PDF downloads (167) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return