Citation: | Bin ZHU (朱斌), Luyao ZHANG (张璐瑶), Yan YAN (闫妍), Meng LI (李猛), Yimin ZHU (朱益民). Enhancing toluene removal in a plasma photocatalytic system through a black TiO2 photocatalyst[J]. Plasma Science and Technology, 2019, 21(11): 115503. DOI: 10.1088/2058-6272/ab3668 |
[1] |
Van Durme J et al 2008 Appl. Catal. B: Environ. 78 324
|
[2] |
Chen H L et al 2008 Appl. Catal. B: Environ. 85 1
|
[3] |
Tu X and Whitehead J C 2012 Appl. Catal. B: Environ.125 439
|
[4] |
Wu J L et al 2013 Plasma Chem. Plasma Process. 33 1073
|
[5] |
Wang J T et al 2016 Plasma Sci. Technol. 18 370
|
[6] |
Chen H L et al 2009 Environ. Sci. Technol. 43 2216
|
[7] |
Huang H B et al 2007 Plasma Chem. Plasma Process. 27 577
|
[8] |
Ochiai T et al 2012 Chem. Eng. J. 209 313
|
[9] |
Wang H J and Chen X Y 2011 J. Hazard. Mater. 186 1888
|
[10] |
Deng X Q et al 2016 Appl. Catal. B: Environ. 188 48
|
[11] |
Sun Z G et al 2018 Plasma Process. Polym. 15 1800095
|
[12] |
Liu X Y et al 2016 Adv. Energy Mater. 6 1600452
|
[13] |
Yang C Y et al 2013 J. Am. Chem. Soc. 135 17831
|
[14] |
Li X S et al 2019 Catal. Today (https://doi.org/10.1016/j.cattod.2019.03.033)
|
[15] |
Sun Z G et al 2019 J. Catal. 375 380
|
[16] |
Deng X Q et al 2017 Catal. Today 281 630
|
[17] |
Fan X et al 2009 Chemosphere 75 1301
|
[18] |
Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
|
[19] |
Ráhel J and Sherman D M 2005 J. Phys. D: Appl. Phys. 38 547
|
[20] |
Li M et al 2018 Plasma Chem. Plasma Process. 38 1063
|
[21] |
Li M et al 2019 Appl. Phys. Lett. 114 114102
|
[22] |
Wang Z et al 2013 Energy Environ. Sci. 6 3007
|
[23] |
Wang Z et al 2013 Adv. Funct. Mater. 23 5444
|
[24] |
Zhu B et al 2017 Top. Catal. 60 914
|
[25] |
Zhu B et al 2015 Appl. Catal. B: Environ. 179 69
|
[26] |
Zhu B et al 2018 Plasma Process. Polym. 15 1700215
|
[27] |
Zhao D Z et al 2011 Chem. Eng. Sci. 66 3922
|
[28] |
Fan H Y et al 2012 Appl. Catal. B: Environ. 119–120 49
|
[29] |
Xu X X et al 2016 Chem. Eng. J. 283 276
|
1. |
Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
![]() |
|
2. | Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021 | |
3. | Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672 | |
4. |
Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
![]() |
|
5. | Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8 | |
6. | Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486 | |
7. | Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253 | |
8. | Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253 | |
9. | Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173 | |
10. | Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4 | |
11. | Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9 | |
12. | Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573 | |
13. | Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924 | |
14. | Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841 | |
15. | Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9 | |
16. | Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321 | |
17. | ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30 | |
18. | Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8 | |
19. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |