Advanced Search+
Liu CHEN, Fulvio ZONCA. Self-consistent kinetic theory with nonlinear wave-particle resonances[J]. Plasma Science and Technology, 2019, 21(12): 125101. DOI: 10.1088/2058-6272/ab3dce
Citation: Liu CHEN, Fulvio ZONCA. Self-consistent kinetic theory with nonlinear wave-particle resonances[J]. Plasma Science and Technology, 2019, 21(12): 125101. DOI: 10.1088/2058-6272/ab3dce

Self-consistent kinetic theory with nonlinear wave-particle resonances

Funds: This work is supported by the ITER-CN under Grant No. 2017YFE0301900. This work was also carried out within the framework of the EUROfusion Consortium and received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 (Project No. WP19-ER/ENEA-05).
More Information
  • Received Date: July 02, 2019
  • Revised Date: August 17, 2019
  • Accepted Date: August 21, 2019
  • We have developed, based on the oscillating-center transformation, a general theoretical approach for self-consistent plasma dynamics including, explicitly, effects of nonlinear (higherorder) wave-particle resonances. A specific example is then given for low-frequency responses of trapped particles in axisymmetric tokamaks. Possible applications to transport as well as nonlinear wave growth/damping are also briefly discussed.
  • [1]
    White R B et al 1983 Phys. Fluids 26 2958
    [2]
    Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett.52 1122
    [3]
    Chen L 1999 J. Geophys. Res. 104 2421
    [4]
    White R B et al 2010 Phys. Plasmas 17 056107
    [5]
    White R B et al 2010 Plasma Phys. Control. Fusion 52 045012
    [6]
    Zonca F et al 2015 New J. Phys. 17 013052
    [7]
    Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
    [8]
    Lewak G J and Chen C S 1969 J. Plasma Phys. 3 481
    [9]
    Peverly P J et al 2000 Laser Phys. 10 303
    [10]
    Chen L, Lin Z and White R 2001 Phys. Plasmas 8 4713
    [11]
    White R, Chen L and Lin Z 2002 Phys. Plasmas 9 1890
    [12]
    Kramer G J et al 2012 Phys. Rev. Lett. 109 035003
    [13]
    Sanchis L et al 2019 Plasma Phys. Control. Fusion 61 014038
    [14]
    Garcia-Munoz M et al 2019 Plasma Phys. Control. Fusion 61 054007
    [15]
    Lichtenberg A J and Lieberman M A 1983 Regular and Stochastic Motion (Berlin: Springer)
    [16]
    Lichtenberg A J and Lieberman M A 2010 Regular and Chaotic Dynamics 2nd edn (Berlin: Springer)
    [17]
    Frieman E A and Chen L 1982 Phys. Fluids 25 502
    [18]
    Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421
    [19]
    Chen L et al 2001 Nucl. Fusion 41 747
    [20]
    Zonca F and Chen L 2014 Phys. Plasmas 21 072120
    [21]
    Zonca F and Chen L 2014 Phys. Plasmas 21 072121
    [22]
    Chirikov B V 1979 Phys. Rep. 52 263
  • Related Articles

    [1]Jiahui ZHANG (张珈珲), Xin JI (吉欣), Keyuan YANG (杨克元), Lei SHI (石磊), Qingxia WANG (王青霞). Energy dissipation and power deposition of electromagnetic waves in the plasma sheath[J]. Plasma Science and Technology, 2021, 23(1): 15404-015404. DOI: 10.1088/2058-6272/abc946
    [2]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [3]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), N A STROKIN, A N STUPIN. Study on plasma sheath and plasma transport properties in the azimuthator[J]. Plasma Science and Technology, 2018, 20(4): 45501-045501. DOI: 10.1088/2058-6272/aaa754
    [4]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [7]REN Yanqiu (仁艳秋), LI Gun (李滚), DUAN Wenshan (段文山). Damping Solitary Wave in a Three-Dimensional Rectangular Geometry Plasma[J]. Plasma Science and Technology, 2016, 18(2): 108-113. DOI: 10.1088/1009-0630/18/2/02
    [8]LIU Huiping(刘惠平), ZOU Xiu(邹秀), QIU Minghui(邱明辉). Sheath Criterion for an Electronegative Plasma Sheath in an Oblique Magnetic Field[J]. Plasma Science and Technology, 2014, 16(7): 633-636. DOI: 10.1088/1009-0630/16/7/01
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
  • Cited by

    Periodical cited type(5)

    1. Engelbrecht, J.T., Kumari, D., Franck, C.M. Optical characterization of actively cooled switching arcs in SF6 alternatives. Journal of Physics D: Applied Physics, 2025, 58(10): 105210. DOI:10.1088/1361-6463/ada450
    2. Becerra, M., Nilsson, J., Franke, S. et al. Spectral and electric diagnostics of low-current arc plasmas in CO2 with N2 and H2O admixtures. Journal of Physics D: Applied Physics, 2024, 57(1): 015202. DOI:10.1088/1361-6463/acfcc6
    3. Wang, K., Zhao, D., Deng, J. et al. Diagnostics of Post-Arc Electron Number Density in a Model Circuit Breaker. 2024. DOI:10.1109/ICEPE-ST61894.2024.10792550
    4. Yan, J.D., Zhang, K., Cao, R. et al. A Ranking Algorithm for the Thermal Interruption Ability of Potential SF6 Alternative Gases. IEEE Transactions on Power Delivery, 2024. DOI:10.1109/TPWRD.2024.3518603
    5. Cui, Y., Wu, Y., Niu, C. et al. Evolution of anodic erosion components and heat transfer efficiency for W and W80Ag20in atmospheric-pressure arcs. Journal of Physics D: Applied Physics, 2020, 53(47): 475203. DOI:10.1088/1361-6463/ababcf

    Other cited types(0)

Catalog

    Article views (232) PDF downloads (295) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return