Advanced Search+
Zihao LIU (刘子豪), Xiang ZHOU (周翔), Renjie ZHU (朱仁杰), Li ZHAO (赵丽), Lingfeng WEI (魏凌峰), Zejie YIN (阴泽杰). Development of a data acquisition and control system for the International Thermonuclear Experimental Reactor neutron flux monitor[J]. Plasma Science and Technology, 2020, 22(1): 15601-015601. DOI: 10.1088/2058-6272/ab46e0
Citation: Zihao LIU (刘子豪), Xiang ZHOU (周翔), Renjie ZHU (朱仁杰), Li ZHAO (赵丽), Lingfeng WEI (魏凌峰), Zejie YIN (阴泽杰). Development of a data acquisition and control system for the International Thermonuclear Experimental Reactor neutron flux monitor[J]. Plasma Science and Technology, 2020, 22(1): 15601-015601. DOI: 10.1088/2058-6272/ab46e0

Development of a data acquisition and control system for the International Thermonuclear Experimental Reactor neutron flux monitor

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11375195 and 11575184) and the National Magnetic Confinement Fusion Energy Development Research (No. 2013GB104003).
More Information
  • Received Date: July 07, 2019
  • Revised Date: September 18, 2019
  • Accepted Date: September 22, 2019
  • To satisfy high-precision, wide-range, and real-time neutron flux measurement requirements by the International Thermonuclear Experimental Reactor (ITER), a data acquisition and control system based on fission chamber detectors and fast controller technology, has been developed for neutron flux monitor in ITER Equatorial Port #7. The signal processing units which are based on a field programmable gate array and the PXI Express platform are designed to realize the neutron flux measurement with 1 ms time resolution and a fast response less than 0.2 ms, together with real-time timestamps provided by a timing board. The application of the widerange algorithm allows the system to measure up to 1010 cps with a relative error of less than 5%. Furthermore, the system is managed and controlled by a software based on the Experimental Physics and Industrial Control System, compliant with COntrol, Data Access and Communication architecture.
  • [1]
    England A C, Hendel H W and Nieschmidt E B 1986 Rev. Sci.Instrum. 57 1754
    [2]
    Sasao M et al 2008 Fusion Sci. Technol. 53 604
    [3]
    Bertalot L et al 2012 J. Inst. 7 C04012
    [4]
    Krasilnikov A V et al 2005 Nucl. Fusion 45 1503
    [5]
    Kaschuck Y et al 2001 Rev. Sci. Instrum. 72 823
    [6]
    Journeaux J Y 2013 Plant control design handbook ITER_D_27LH2V v7.0 (https://static.iter.org/codac/pcdh7/Folder%201/1-Plant_Control_Design_Handbook_27LH2V_v7_0.pdf )
    [7]
    Simrock S 2016 Fusion Eng. Des. 112 724
    [8]
    Kraimer M R et al 2017 EPICS application developer’s guide EPICS Base Release 3.16.1 (https://epics.anl.gov/base/R3-16/1-docs/AppDevGuide.pdf )
    [9]
    Plaige Y and Quenee R 1967 IEEE Trans. Nucl. Sci. 14 247
    [10]
    Li S P et al 2013 Nucl. Sci. Tech. 24 040402
    [11]
    Liu Z H et al 2019 Fusion Sci. Technol. 75 127
    [12]
    Lescop B et al 2004 A new system for in-core wide range neutron monitoring Proc. IEEE Symp. Conf. Record Nuclear Science 2004 (Piscataway, NJ: IEEE)
    [13]
    Yamauchi M et al 2003 Rev. Sci. Instrum. 74 1730
    [14]
    Yuan G L et al 2014 Plasma Sci. Technol. 16 168
    [15]
    Arnold B F and Stahlecker P 2002 Linear Algebra Appl. 354 3
    [16]
    Nishitani T et al 2007 Fusion Eng. Des. 82 1192
    [17]
    Simrock S et al 2011 Fusion Eng. Des. 86 1145
    [18]
    Zhou X et al 2018 Plasma Sci. Technol. 20 065603
    [19]
    Castro R et al 2015 Fusion Eng. Des. 96–97 751
    [20]
    Esquembri S et al 2018 Fusion Eng. Des. 130 26
    [21]
    Rivers M 2018 asynDriver: EPICS driver support Release 4–34 (http://aps.anl.gov/epics/modules/soft/asyn/R4-34/asynDriver.pdf )
    [22]
    Simrock S et al 2015 Fusion Eng. Des. 96–97 952
    [23]
    Zhang P F et al 2017 Nucl. Fusion Plasma Phys. 37 379 (in Chinese)
    [24]
    Mitsutaka I et al 2009 Chin. Phys. Lett. 26 105201
  • Related Articles

    [1]Na LI, Daoman HAN, Quanzhi ZHANG, Xuhui LIU, Yingjie WANG, Younian WANG. Fluid simulation of the effect of a dielectric window with high temperature on plasma parameters in inductively coupled plasma[J]. Plasma Science and Technology, 2023, 25(3): 035401. DOI: 10.1088/2058-6272/ac92ce
    [2]Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e
    [3]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [6]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [7]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), GAO Ying (高莹), JIANG Yongfeng (蒋永锋), WEN Wen (文文), CHEN Longwei (陈龙威). Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water[J]. Plasma Science and Technology, 2016, 18(3): 278-286. DOI: 10.1088/1009-0630/18/3/11
    [8]ZHAO Chengli (赵成利), DENG Chaoyong (邓朝勇), SUN Weizhong(孙伟中), ZHANG Junyuan (张浚源), CHEN Feng (陈峰), HE Pingni (贺平逆), CHEN Xu (陈旭), GOU Fujun (芶富均). Etching Mechanisms of CF3 Etching Fluorinated Si: Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(7): 670-674. DOI: 10.1088/1009-0630/14/7/23
    [9]JI Liangliang(吉亮亮), ZOU Shuai(邹帅), SHEN Mingrong(沈明荣), XIN Yu(辛煜). Radio Frequency Underwater Discharge Operation and Its Application to Congo Red Degradation[J]. Plasma Science and Technology, 2012, 14(2): 111-117. DOI: 10.1088/1009-0630/14/2/06
    [10]D. GUENDOUZ, A. HAMID, A. HENNAD. Second Order Fluid Glow Discharge Model Sustained by Different Source Terms[J]. Plasma Science and Technology, 2011, 13(5): 583-590.
  • Cited by

    Periodical cited type(13)

    1. Wang, Y., He, X., Wang, C. Quantitative elemental analysis of bismuth brass by microchip laser-ablation spark-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2023, 38(8): 1643-1651. DOI:10.1039/d3ja00097d
    2. Liao, Y., He, X., Wu, X. One-Point and Multiline Calibration Fiber-Optic Laser-Ablation Spark-Induced Breakdown Spectroscopy for Quantitative Analysis of Elements in Aluminum Alloys. International Journal of Optics, 2023. DOI:10.1155/2023/2562588
    3. Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274
    4. Zhu, Z.-F., Li, B., Gao, Q. et al. Multiple Discharges-Enhanced Laser-Induced Breakdown Spectroscopy | [多次放电的激光诱导击穿光谱信号增强]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2021, 41(8): 2633-2637. DOI:10.3964/j.issn.1000-0593(2021)08-2633-05
    5. Loibl, A., Tercero Espinoza, L.A. Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 2021. DOI:10.1016/j.resconrec.2021.105462
    6. Huang, M.-T., Jiang, Y.-H., Chen, Y.-Q. et al. Quantitative analysis of trace elements in bismuth brass with high repetition rate laser-ablation spark-induced breakdown spectrum | [铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(10): 104206. DOI:10.7498/aps.70.20202018
    7. Wang, Y., Chen, Y., Li, R. et al. Quantitative elemental analysis of aluminum alloys with one-point calibration high repetition rate laser-ablation spark-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 314-321. DOI:10.1039/d0ja00398k
    8. Cao, Y., Kang, J., Chen, Y. et al. Temporal Profiles of Atomic Emissions in High-Repetition-Rate Laser-Ablation Spark-Induced Breakdown Spectroscopy | [高重复频率激光剥离-火花诱导击穿光谱中原子辐射的时域特性研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47(6): 0611002. DOI:10.3788/CJL202047.0611002
    9. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f
    10. He, X., Li, R., Chen, Y. Application of fiber optic high repetition rate laser-ablation spark-induced breakdown spectroscopy on the elemental analysis of aluminum alloys. Applied Optics, 2019, 58(31): 8522-8528. DOI:10.1364/AO.58.008522
    11. Kang, J., Chen, Y., Li, R. Calibration-free elemental analysis combined with high repetition rate laser-ablation spark-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy, 2019. DOI:10.1016/j.sab.2019.105711
    12. Jiang, Y., Li, R., Chen, Y. Elemental analysis of copper alloys with laser-Ablation spark-induced breakdown spectroscopy based on a fiber laser operated at 30 kHz pulse repetition rate. Journal of Analytical Atomic Spectrometry, 2019, 34(9): 1838-1845. DOI:10.1039/c9ja00169g
    13. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (139) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return