Citation: | Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82 |
[1] |
Massines F et al 1998 J. Appl. Phys. 83 2950
|
[2] |
Park J et al 2001 J. Appl. Phys. 89 20
|
[3] |
Fridman G et al 2008 Plasma Process Polym. 5 503
|
[4] |
Laroussi M 2005 Plasma Process Polym. 2 391
|
[5] |
Iza F et al 2008 Plasma Process Polym. 5 322
|
[6] |
He J et al 2013 Plasma Sources Sci. 22 035008
|
[7] |
Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
|
[8] |
Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
|
[9] |
Xiong Q et al 2010 Phys. Plasmas 17 043506
|
[10] |
Laroussi M et al 2004 J. Appl. Phys. 96 3028
|
[11] |
Graves D B 2014 Phys. Plasmas 21 080901
|
[12] |
Zhang Y T and Wang Y H 2018 Phys. Plasmas 25 023509
|
[13] |
Lou J and Zhang Y T 2013 IEEE Tran. Plasma Sci. 41 274
|
[14] |
Zhang Y T and He J 2013 Phys. Plasmas 20 013502
|
[15] |
Balcon N, Hagelaar G J M and Boeuf J P 2008 IEEE Trans.Plasma Sci. 36 2782
|
[16] |
You S J et al 2003 J. Appl. Phys. 94 7422
|
[17] |
Schulze J et al 2011 Phys. Rev. Lett. 107 275001
|
[18] |
Wang X L, Liu Y and Zhang Y T 2017 IEEE Trans. Plasma Sci. 45 3147
|
[19] |
Sousa J S et al 2011 J. Appl. Phys. 109 123302
|
[20] |
Waskoenig J et al 2010 Plasma Sources Sci. Technol. 19 045018
|
[21] |
Zhang Y T, Chi Y Y and He J 2014 Plasma Process. Polym.11 639
|
[22] |
Huang X J et al 2011 Phys. Plasmas 18 033503
|
[23] |
Huo W G et al 2014 Phys. Plasmas 21 053505
|
[24] |
Hu J T et al 2012 Phys. Plasmas 19 063505
|
[25] |
Leins M et al 2014 Contrib. Plasma Phys. 54 14
|
[26] |
Zhang Y T, Liu Y and Liu B 2017 Plasma Sci. Technol. 19 085402
|
[27] |
Lee M U, Lee J K and Yun G S 2018 Plasma Process Polym.15 1700124
|
[28] |
Shi J J et al 2008 Appl. Phys. Lett. 93 041502
|
[29] |
Kwon H C et al 2014 Phys. Plasmas 21 033511
|
[30] |
Farouk T et al 2008 Plasma Sources Sci. Technol. 17 035015
|
[31] |
Yuan X H and Raja L L 2003 IEEE Trans. Plasmas Sci. 31 495
|
[32] |
Hübner S et al 2012 J. Phy. D: Appl. Phys. 45 055203
|
[33] |
Ashida S, Shim M R and Lieberman M A 1996 J. Vac. Sci.Technol. A 14 391
|
[34] |
Lieberman M A and Ashida S 1996 Plasma Sources Sci.Technol. 5 145
|
[1] | Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a |
[2] | Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6 |
[3] | Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e |
[4] | A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f |
[5] | Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2 |
[6] | Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c |
[7] | Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940 |
[8] | ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04 |
[9] | GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02 |
[10] | WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04 |
1. | Andreev, N.E., Umarov, I.R., Popov, V.S. Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research. Bulletin of the Lebedev Physics Institute, 2023. DOI:10.3103/S1068335623190028 |
2. | Elaji, A., Bake, M.A., Tang, S. et al. Bright attosecond polarized γ-ray emission from the interaction of an intense laser pulse with non-uniform near-critical-density plasma. Chinese Journal of Physics, 2022. DOI:10.1016/j.cjph.2022.05.001 |