Advanced Search+
Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
Citation: Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82

Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma

Funds: This work was supported by National Science Foundation of China (Nos. 11675095 and 11975142).
More Information
  • Received Date: May 09, 2019
  • Revised Date: October 09, 2019
  • Accepted Date: October 13, 2019
  • The generation of a very strong peak current in the first period (PCFP) in a pulse-modulated microwave discharge has been discussed in previous studies. In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model. The computational results show that by increasing the duty cycle or voltage modulation rate (VMR), the discharge eventually becomes fully continuous and PCFP can no longer be observed. In the transition process, the distributions of the electric field, electron energy probability function (EEPF) and plasma density are discussed according to the simulation data, showing different discharge structures. The simulations indicate that many high-energy electrons with electron energy larger than 20 eV and low-energy electrons with electron energy less than 3 eV could be generated in a pulsed microwave discharge, together with a reversal electric field formed in the anode sheath when PCFP occurs. However, only medium-energy electrons could be observed in a fully continuous discharge. Therefore, by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.
  • [1]
    Massines F et al 1998 J. Appl. Phys. 83 2950
    [2]
    Park J et al 2001 J. Appl. Phys. 89 20
    [3]
    Fridman G et al 2008 Plasma Process Polym. 5 503
    [4]
    Laroussi M 2005 Plasma Process Polym. 2 391
    [5]
    Iza F et al 2008 Plasma Process Polym. 5 322
    [6]
    He J et al 2013 Plasma Sources Sci. 22 035008
    [7]
    Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
    [8]
    Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
    [9]
    Xiong Q et al 2010 Phys. Plasmas 17 043506
    [10]
    Laroussi M et al 2004 J. Appl. Phys. 96 3028
    [11]
    Graves D B 2014 Phys. Plasmas 21 080901
    [12]
    Zhang Y T and Wang Y H 2018 Phys. Plasmas 25 023509
    [13]
    Lou J and Zhang Y T 2013 IEEE Tran. Plasma Sci. 41 274
    [14]
    Zhang Y T and He J 2013 Phys. Plasmas 20 013502
    [15]
    Balcon N, Hagelaar G J M and Boeuf J P 2008 IEEE Trans.Plasma Sci. 36 2782
    [16]
    You S J et al 2003 J. Appl. Phys. 94 7422
    [17]
    Schulze J et al 2011 Phys. Rev. Lett. 107 275001
    [18]
    Wang X L, Liu Y and Zhang Y T 2017 IEEE Trans. Plasma Sci. 45 3147
    [19]
    Sousa J S et al 2011 J. Appl. Phys. 109 123302
    [20]
    Waskoenig J et al 2010 Plasma Sources Sci. Technol. 19 045018
    [21]
    Zhang Y T, Chi Y Y and He J 2014 Plasma Process. Polym.11 639
    [22]
    Huang X J et al 2011 Phys. Plasmas 18 033503
    [23]
    Huo W G et al 2014 Phys. Plasmas 21 053505
    [24]
    Hu J T et al 2012 Phys. Plasmas 19 063505
    [25]
    Leins M et al 2014 Contrib. Plasma Phys. 54 14
    [26]
    Zhang Y T, Liu Y and Liu B 2017 Plasma Sci. Technol. 19 085402
    [27]
    Lee M U, Lee J K and Yun G S 2018 Plasma Process Polym.15 1700124
    [28]
    Shi J J et al 2008 Appl. Phys. Lett. 93 041502
    [29]
    Kwon H C et al 2014 Phys. Plasmas 21 033511
    [30]
    Farouk T et al 2008 Plasma Sources Sci. Technol. 17 035015
    [31]
    Yuan X H and Raja L L 2003 IEEE Trans. Plasmas Sci. 31 495
    [32]
    Hübner S et al 2012 J. Phy. D: Appl. Phys. 45 055203
    [33]
    Ashida S, Shim M R and Lieberman M A 1996 J. Vac. Sci.Technol. A 14 391
    [34]
    Lieberman M A and Ashida S 1996 Plasma Sources Sci.Technol. 5 145
  • Related Articles

    [1]J COSFELD, P DREWS, B BLACKWELL, M JAKUBOWSKI, H NIEMANN, D ZHANG, Y FENG, the Wendelstein -X Team. Numerical estimate of multi-species ion sound speed of Langmuir probe interpretations in the edge plasmas of Wendelstein 7-X[J]. Plasma Science and Technology, 2020, 22(8): 85102-085102. DOI: 10.1088/2058-6272/ab8974
    [2]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [3]Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802
    [4]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [5]K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, Y. NAGASHIMA, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, O. MITARAI, A. FUKUYAMA, Y. TAKASE, X. GAO, H. LIU, J. QIAN, M. ONO, R. RAMAN. Power Balance Estimation in Long Duration Discharges on QUEST[J]. Plasma Science and Technology, 2016, 18(11): 1069-1075. DOI: 10.1088/1009-0630/18/11/03
    [6]WANG Xianwei(汪献伟), XIE Fei(谢飞), JIN Huan(金环). Calculation and Optimization of ITER Upper VS Feeder Under an Electromagnetic Load[J]. Plasma Science and Technology, 2014, 16(11): 1063-1067. DOI: 10.1088/1009-0630/16/11/12
    [7]BU Jingliang (布景亮), LIU Yong (刘永), ZHANG Xinjun (张新军), TI Ang (提昂), et al.. Experimental Determination of the ICRF Power Depositing on the Electrons in HT-7[J]. Plasma Science and Technology, 2013, 15(11): 1100-1102. DOI: 10.1088/1009-0630/15/11/04
    [8]CUI Xuewu (崔学武), PAN Yudong (潘宇东), LI Jiaxian (李佳鲜), ZHANG Jinhua (张锦华), MAO Rui (毛瑞). Simulation Study for Divertor Geometry and Gas Puffng to Handle Huge Exhaust Power in HL-2M with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(6): 489-492. DOI: 10.1088/1009-0630/15/6/01
    [9]PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22
    [10]K. SHIMADA, T. TERAKADO, K. YAMAUCHI, M. MATSUKAWA, O. BAULAIGUE, R. COLETTI, A. COLETTI, L. NOVELLO. Minimization of Reactive Power Fluctuation in JT-60SA Magnet Power Supply[J]. Plasma Science and Technology, 2013, 15(2): 184-187. DOI: 10.1088/1009-0630/15/2/22
  • Cited by

    Periodical cited type(3)

    1. El-Hadeed, M.M.A., Bourham, M.A., Al-Halim, M.A.A. Modeling of Thrust Properties for Capillary-Type Pulsed Plasma Thrusters Using Electrothermal Discharge in Teflon. IEEE Transactions on Plasma Science, 2024. DOI:10.1109/TPS.2024.3502626
    2. Zhao, Y., Zhang, Y., Wu, J. et al. Characteristics of plasma in a novel laser-assisted pulsed plasma thruster. Plasma Science and Technology, 2022, 24(7): 074001. DOI:10.1088/2058-6272/ac337b
    3. Zhao, Y., Tan, S., Wu, J. et al. The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant. Plasma Science and Technology, 2021, 23(10): 104007. DOI:10.1088/2058-6272/ac10ff

    Other cited types(0)

Catalog

    Article views (189) PDF downloads (167) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return