Advanced Search+
Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
Citation: Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82

Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma

Funds: This work was supported by National Science Foundation of China (Nos. 11675095 and 11975142).
More Information
  • Received Date: May 09, 2019
  • Revised Date: October 09, 2019
  • Accepted Date: October 13, 2019
  • The generation of a very strong peak current in the first period (PCFP) in a pulse-modulated microwave discharge has been discussed in previous studies. In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model. The computational results show that by increasing the duty cycle or voltage modulation rate (VMR), the discharge eventually becomes fully continuous and PCFP can no longer be observed. In the transition process, the distributions of the electric field, electron energy probability function (EEPF) and plasma density are discussed according to the simulation data, showing different discharge structures. The simulations indicate that many high-energy electrons with electron energy larger than 20 eV and low-energy electrons with electron energy less than 3 eV could be generated in a pulsed microwave discharge, together with a reversal electric field formed in the anode sheath when PCFP occurs. However, only medium-energy electrons could be observed in a fully continuous discharge. Therefore, by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.
  • [1]
    Massines F et al 1998 J. Appl. Phys. 83 2950
    [2]
    Park J et al 2001 J. Appl. Phys. 89 20
    [3]
    Fridman G et al 2008 Plasma Process Polym. 5 503
    [4]
    Laroussi M 2005 Plasma Process Polym. 2 391
    [5]
    Iza F et al 2008 Plasma Process Polym. 5 322
    [6]
    He J et al 2013 Plasma Sources Sci. 22 035008
    [7]
    Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
    [8]
    Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
    [9]
    Xiong Q et al 2010 Phys. Plasmas 17 043506
    [10]
    Laroussi M et al 2004 J. Appl. Phys. 96 3028
    [11]
    Graves D B 2014 Phys. Plasmas 21 080901
    [12]
    Zhang Y T and Wang Y H 2018 Phys. Plasmas 25 023509
    [13]
    Lou J and Zhang Y T 2013 IEEE Tran. Plasma Sci. 41 274
    [14]
    Zhang Y T and He J 2013 Phys. Plasmas 20 013502
    [15]
    Balcon N, Hagelaar G J M and Boeuf J P 2008 IEEE Trans.Plasma Sci. 36 2782
    [16]
    You S J et al 2003 J. Appl. Phys. 94 7422
    [17]
    Schulze J et al 2011 Phys. Rev. Lett. 107 275001
    [18]
    Wang X L, Liu Y and Zhang Y T 2017 IEEE Trans. Plasma Sci. 45 3147
    [19]
    Sousa J S et al 2011 J. Appl. Phys. 109 123302
    [20]
    Waskoenig J et al 2010 Plasma Sources Sci. Technol. 19 045018
    [21]
    Zhang Y T, Chi Y Y and He J 2014 Plasma Process. Polym.11 639
    [22]
    Huang X J et al 2011 Phys. Plasmas 18 033503
    [23]
    Huo W G et al 2014 Phys. Plasmas 21 053505
    [24]
    Hu J T et al 2012 Phys. Plasmas 19 063505
    [25]
    Leins M et al 2014 Contrib. Plasma Phys. 54 14
    [26]
    Zhang Y T, Liu Y and Liu B 2017 Plasma Sci. Technol. 19 085402
    [27]
    Lee M U, Lee J K and Yun G S 2018 Plasma Process Polym.15 1700124
    [28]
    Shi J J et al 2008 Appl. Phys. Lett. 93 041502
    [29]
    Kwon H C et al 2014 Phys. Plasmas 21 033511
    [30]
    Farouk T et al 2008 Plasma Sources Sci. Technol. 17 035015
    [31]
    Yuan X H and Raja L L 2003 IEEE Trans. Plasmas Sci. 31 495
    [32]
    Hübner S et al 2012 J. Phy. D: Appl. Phys. 45 055203
    [33]
    Ashida S, Shim M R and Lieberman M A 1996 J. Vac. Sci.Technol. A 14 391
    [34]
    Lieberman M A and Ashida S 1996 Plasma Sources Sci.Technol. 5 145
  • Related Articles

    [1]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [2]Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6
    [3]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [4]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [5]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [6]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [7]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [8]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [9]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [10]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
  • Cited by

    Periodical cited type(2)

    1. Andreev, N.E., Umarov, I.R., Popov, V.S. Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research. Bulletin of the Lebedev Physics Institute, 2023. DOI:10.3103/S1068335623190028
    2. Elaji, A., Bake, M.A., Tang, S. et al. Bright attosecond polarized γ-ray emission from the interaction of an intense laser pulse with non-uniform near-critical-density plasma. Chinese Journal of Physics, 2022. DOI:10.1016/j.cjph.2022.05.001

    Other cited types(0)

Catalog

    Article views (189) PDF downloads (167) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return