Advanced Search+
Yanghaichao LIU (刘杨海超), Liping LIAN (连莉萍), Weixuan ZHAO(赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇). DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 34016-034016. DOI: 10.1088/2058-6272/ab69bc
Citation: Yanghaichao LIU (刘杨海超), Liping LIAN (连莉萍), Weixuan ZHAO(赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇). DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 34016-034016. DOI: 10.1088/2058-6272/ab69bc

DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene

Funds: The financial support for this research was provided by National Natural Science Foundation of China (No. 21577023), the Special Research Project on Causes and Control Technology of Air Pollution (Nos. 2017YFC0212905), and the Science and Technology Innovation Action Project Supported by the Science and Technology Commission of Shanghai Municipality (No. 18DZ1202605).
More Information
  • Received Date: August 31, 2019
  • Revised Date: January 06, 2020
  • Accepted Date: January 08, 2020
  • This paper investigates the degradation of chlorobenzene by dielectric barrier discharge (DBD) coupled with MnOx/γ-Al2O3 catalysts. MnOx/γ-Al2O3 catalysts were prepared using the impregnation method and were characterized in detail by N2 adsorption/desorption, x-ray diffraction and x-ray photoelectron spectroscopy. Compared with the single DBD reactor, the coupled reactor has a better performance on the removal rate of chlorobenzene, the selectivity of COx, and the inhibition of ozone production, especially at low discharge voltages. The degradation rate of chlorobenzene and selectivity of COx can reach 96.3% and 53.0%, respectively, at the specific energy density of 1350 J l–1. Moreover, the ozone concentration produced by the discharge is significantly reduced because the MnOx/Al2O3 catalysts contribute to the decomposition of ozone to form oxygen atoms for the oxidation of chlorobenzene. In addition, based on analysis of the byproducts, the decomposition mechanism of chlorobenzene in the coupled reactor is also discussed.
  • [1]
    Haas J R et al 1999 Geochim. Cosmochim. Acta 63 3429
    [2]
    Dobrzyńska E et al 2010 Crit. Rev. Anal. Chem. 40 41
    [3]
    Guo Y Y et al 2013 Adsorption 19 1109
    [4]
    Guo Y Y et al 2014 Chem. Eng. J. 236 506
    [5]
    Jou C J G et al 2010 Environ. Prog. Sustain. Energy 29 272
    [6]
    Chin C J M et al 2010 Appl. Surf. Sci. 256 6035
    [7]
    Yuzawa H et al 2011 J. Phys. Chem. Lett. 2 1868
    [8]
    Zhao X Y et al 2018 Environ. Sci. Pollut. Res. 25 31219
    [9]
    Cheng Z W et al 2016 J. Environ. Sci. 46 203
    [10]
    Fazekas P et al 2013 Plasma Chem. Plasma Process. 33 765
    [11]
    Higgins B et al 2001 Chemosphere 42 703
    [12]
    Weng X L et al 2017 Environ. Sci. Technol. 51 8057
    [13]
    Yang P et al 2013 Chem. Eng. J. 234 203
    [14]
    Yang P et al 2015 Appl. Catal. B Environ. 162 227
    [15]
    Debecker D P et al 2010 Catal. Today 157 125
    [16]
    Yuan C et al 2018 React. Kinet. Mech. Catal. 125 757
    [17]
    Yang P et al 2018 Appl. Catal. B Environ. 239 114
    [18]
    Liu X L et al 2019 J. Hazard. Mater. 363 90
    [19]
    Giraudon J M, Elhachimi A and Leclercq G 2008 Appl. Catal.B Environ. 84 251
    [20]
    Ma T P et al 2016 Plasma Sci. Technol. 18 686
    [21]
    Sivachandiran L, Karuppiah J and Subrahmanyam C 2012 Int.J. Chem. React. Eng. 10 A62
    [22]
    Rohani V et al 2017 Chem. Eng. J. 309 471
    [23]
    Chang T et al 2018 Chem. Eng. J. 348 15
    [24]
    Norsic C et al 2018 Chem. Eng. J. 347 944
    [25]
    Qin C H et al 2016 Chemosphere 162 125
    [26]
    Mei D H et al 2016 Appl. Catal. B Environ. 182 525
    [27]
    Jiang L Y et al 2016 J. Chem. Technol. Biotechnol. 91 3079
    [28]
    Trinh Q H and Mok Y S 2015 Catalysts 5 800
    [29]
    Xu N et al 2014 Plasma Chem. Plasma Process. 34 1387
    [30]
    Jiang N et al 2019 Appl. Catal. B Environ. 259 118061
    [31]
    Jiang N et al 2018 Chem. Eng. J. 350 12
    [32]
    Jiang N et al 2019 J. Hazard. Mater. 369 611
    [33]
    Pan K L and Chang M B 2019 Environ. Sci. Pollut. Res. 26 12948
    [34]
    Kim S C and Shim W G 2010 Appl. Catal. B Environ. 98 180
    [35]
    Liu Y et al 2001 J. Catal. 202 200
    [36]
    Fan X Y et al 2011 Catal. Lett. 141 158
    [37]
    Wan Y L, Xie X Y and Chen X J 2017 Prog. React. Kinet.Mech. 42 259
    [38]
    Nguyen Dinh M T et al 2016 J. Hazard. Mater. 314 88
    [39]
    Jin D D et al 2015 RSC Adv. 5 15103
    [40]
    Wang H C et al 2011 J. Hazard. Mater. 186 1781
    [41]
    Veerapandian S K P et al 2019 J. Hazard. Mater. 379 120781
    [42]
    Dinh M T N et al 2015 Appl. Catal. B Environ. 172–173 65
    [43]
    Li D et al 2008 Plasma Sci. Technol. 10 94
    [44]
    Sultana S et al 2019 Appl. Catal. B Environ. 253 49
    [45]
    Duan J J et al 2014 Adv. Funct. Mater. 24 2072
    [46]
    Gao F et al 2014 Carbon 80 640
    [47]
    Feng X B et al 2020 J. Hazard. Mater. 383 121143
    [48]
    Araújo M P et al 2019 J. Mater. Sci. 54 8919
    [49]
    Grootendorst E J, Verbeek Y and Ponec V 1995 J. Catal.157 706
    [50]
    Durand J P et al 2010 J. Phys. Chem. C 114 20000
    [51]
    Zhu X B et al 2016 Appl. Catal. B Environ. 183 124
    [52]
    Liu G et al 2013 Particuology 11 454
    [53]
    Atkinson R and Carter W P L 1984 Chem. Rev. 84 437
    [54]
    Guo Y F et al 2006 J. Mol. Catal. A Chem. 245 93
    [55]
    Stevens W R, Ruscic B and Baer T 2010 J. Phys. Chem. A 114 13134
    [56]
    Wenthold P G and Squires R R 1994 J. Am. Chem. Soc.116 6401
    [57]
    Kohno H et al 1998 IEEE Trans. Ind. Appl. 34 953
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (126) PDF downloads (103) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return