Citation: | Yanghaichao LIU (刘杨海超), Liping LIAN (连莉萍), Weixuan ZHAO(赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇). DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 34016-034016. DOI: 10.1088/2058-6272/ab69bc |
[1] |
Haas J R et al 1999 Geochim. Cosmochim. Acta 63 3429
|
[2] |
Dobrzyńska E et al 2010 Crit. Rev. Anal. Chem. 40 41
|
[3] |
Guo Y Y et al 2013 Adsorption 19 1109
|
[4] |
Guo Y Y et al 2014 Chem. Eng. J. 236 506
|
[5] |
Jou C J G et al 2010 Environ. Prog. Sustain. Energy 29 272
|
[6] |
Chin C J M et al 2010 Appl. Surf. Sci. 256 6035
|
[7] |
Yuzawa H et al 2011 J. Phys. Chem. Lett. 2 1868
|
[8] |
Zhao X Y et al 2018 Environ. Sci. Pollut. Res. 25 31219
|
[9] |
Cheng Z W et al 2016 J. Environ. Sci. 46 203
|
[10] |
Fazekas P et al 2013 Plasma Chem. Plasma Process. 33 765
|
[11] |
Higgins B et al 2001 Chemosphere 42 703
|
[12] |
Weng X L et al 2017 Environ. Sci. Technol. 51 8057
|
[13] |
Yang P et al 2013 Chem. Eng. J. 234 203
|
[14] |
Yang P et al 2015 Appl. Catal. B Environ. 162 227
|
[15] |
Debecker D P et al 2010 Catal. Today 157 125
|
[16] |
Yuan C et al 2018 React. Kinet. Mech. Catal. 125 757
|
[17] |
Yang P et al 2018 Appl. Catal. B Environ. 239 114
|
[18] |
Liu X L et al 2019 J. Hazard. Mater. 363 90
|
[19] |
Giraudon J M, Elhachimi A and Leclercq G 2008 Appl. Catal.B Environ. 84 251
|
[20] |
Ma T P et al 2016 Plasma Sci. Technol. 18 686
|
[21] |
Sivachandiran L, Karuppiah J and Subrahmanyam C 2012 Int.J. Chem. React. Eng. 10 A62
|
[22] |
Rohani V et al 2017 Chem. Eng. J. 309 471
|
[23] |
Chang T et al 2018 Chem. Eng. J. 348 15
|
[24] |
Norsic C et al 2018 Chem. Eng. J. 347 944
|
[25] |
Qin C H et al 2016 Chemosphere 162 125
|
[26] |
Mei D H et al 2016 Appl. Catal. B Environ. 182 525
|
[27] |
Jiang L Y et al 2016 J. Chem. Technol. Biotechnol. 91 3079
|
[28] |
Trinh Q H and Mok Y S 2015 Catalysts 5 800
|
[29] |
Xu N et al 2014 Plasma Chem. Plasma Process. 34 1387
|
[30] |
Jiang N et al 2019 Appl. Catal. B Environ. 259 118061
|
[31] |
Jiang N et al 2018 Chem. Eng. J. 350 12
|
[32] |
Jiang N et al 2019 J. Hazard. Mater. 369 611
|
[33] |
Pan K L and Chang M B 2019 Environ. Sci. Pollut. Res. 26 12948
|
[34] |
Kim S C and Shim W G 2010 Appl. Catal. B Environ. 98 180
|
[35] |
Liu Y et al 2001 J. Catal. 202 200
|
[36] |
Fan X Y et al 2011 Catal. Lett. 141 158
|
[37] |
Wan Y L, Xie X Y and Chen X J 2017 Prog. React. Kinet.Mech. 42 259
|
[38] |
Nguyen Dinh M T et al 2016 J. Hazard. Mater. 314 88
|
[39] |
Jin D D et al 2015 RSC Adv. 5 15103
|
[40] |
Wang H C et al 2011 J. Hazard. Mater. 186 1781
|
[41] |
Veerapandian S K P et al 2019 J. Hazard. Mater. 379 120781
|
[42] |
Dinh M T N et al 2015 Appl. Catal. B Environ. 172–173 65
|
[43] |
Li D et al 2008 Plasma Sci. Technol. 10 94
|
[44] |
Sultana S et al 2019 Appl. Catal. B Environ. 253 49
|
[45] |
Duan J J et al 2014 Adv. Funct. Mater. 24 2072
|
[46] |
Gao F et al 2014 Carbon 80 640
|
[47] |
Feng X B et al 2020 J. Hazard. Mater. 383 121143
|
[48] |
Araújo M P et al 2019 J. Mater. Sci. 54 8919
|
[49] |
Grootendorst E J, Verbeek Y and Ponec V 1995 J. Catal.157 706
|
[50] |
Durand J P et al 2010 J. Phys. Chem. C 114 20000
|
[51] |
Zhu X B et al 2016 Appl. Catal. B Environ. 183 124
|
[52] |
Liu G et al 2013 Particuology 11 454
|
[53] |
Atkinson R and Carter W P L 1984 Chem. Rev. 84 437
|
[54] |
Guo Y F et al 2006 J. Mol. Catal. A Chem. 245 93
|
[55] |
Stevens W R, Ruscic B and Baer T 2010 J. Phys. Chem. A 114 13134
|
[56] |
Wenthold P G and Squires R R 1994 J. Am. Chem. Soc.116 6401
|
[57] |
Kohno H et al 1998 IEEE Trans. Ind. Appl. 34 953
|
1. | Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045 | |
2. | Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931 | |
3. | Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667 | |
4. | Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866 | |
5. | Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3 | |
6. | Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c | |
7. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56 | |
8. | Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582 | |
9. | Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927 | |
10. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696 | |
11. | Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002 | |
12. | Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716 | |
13. | Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274 | |
14. | Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984 | |
15. | Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622 | |
16. | Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb | |
17. | Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844 | |
18. | Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292 | |
19. | Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562 | |
20. | Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433 | |
21. | Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502 | |
22. | Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111 | |
23. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |