Advanced Search+
Zahid Iqbal KHATTAK, Abdul Waheed KHAN, Faiq JAN, Muhammad SHAFIQ. Investigation of E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma[J]. Plasma Science and Technology, 2020, 22(6): 65403-065403. DOI: 10.1088/2058-6272/ab785e
Citation: Zahid Iqbal KHATTAK, Abdul Waheed KHAN, Faiq JAN, Muhammad SHAFIQ. Investigation of E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma[J]. Plasma Science and Technology, 2020, 22(6): 65403-065403. DOI: 10.1088/2058-6272/ab785e

Investigation of E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma

Funds: This work is partially supported by Quaid-i-Azam University URF for the year 2019–2020 and Higher Education Com- mission (HEC) P. No. 820 for Plasma Physics Gomal Uni- versity (D I Khan).
More Information
  • Received Date: December 18, 2019
  • Revised Date: February 19, 2020
  • Accepted Date: February 19, 2020
  • In this paper, E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction (0%–100%), operating pressure (1 Pa, 5 Pa, 10 Pa and 50 Pa), and radio frequency (RF) power (5–100 W). An RF compensated Langmuir probe and optical emission spectroscopy are used for the diagnostics of the plasma under study. Owing to the lower ionization potential and higher collision cross-section of argon, when its fraction in the discharge is increased, the mode transition occurs at lower RF power; i.e. for 0% argon and 1 Pa pressure, the threshold power of the E–H mode transition is 65 W, which reduces to 20 W when the argon fraction is increased. The electron density increases with the argon fraction at a fixed pressure, whereas the temperature decreases with the argon fraction. The relaxation length of the low-energy electrons increases, and decreases for high-energy electrons with argon fraction, due to the Ramseur effect. However, the relaxation length of both groups of electrons decreases with pressure due to reduction in the mean free path. The electron energy probability function (EEPF) profiles are non-Maxwellian in E-mode, attributable to the non- local electron kinetics in this mode; however, they evolve to Maxwellian distribution when the discharge transforms to H-mode due to lower electron temperature and higher electron density in H-mode. The tail of the measured EEPFs is found to deplete in both E- and H-modes when the argon fraction in the discharge is increased, because argon has a much lower excitation potential (11.5 eV) than neon (16.6 eV).
  • [1]
    Sharma A et al 2005 Environ. Sci. Technol. 39 339
    [2]
    Becker K et al 2005 Plasma Phys. Control. Fusion 47 B513
    [3]
    Herrmann H W et al 1999 Phys. plasmas. 6 2284
    [4]
    Ricard A, Tetreault J and Hubert J 1991 J. Phys. B Atomic Mol.Opt. Phys. 24 1115
    [5]
    Callede G et al 1991 J. Phys. D: Appl. Phys. 24 909
    [6]
    Naveed M et al 2006 Phys. Lett. A
    [7]
    Sun F S and Sturgeon R E 1999 Spectrochim. Acta B 54 2121
    [8]
    Bai K H, Chang H Y and Uhm H S 2001 Appl. Phys Lett.79 1596
    [9]
    Weber L F 2006 IEEE Trans. Plasma Sci. 34 268
    [10]
    Nakano T and Samukawa S 1999 J. Vac. Sci. Technol. A 17 686
    [11]
    Muñoz J et al 2018 J. Quant. Spectros. Radiat. Transfer 206 135
    [12]
    Rehman N U et al 2008 J. Appl. Phys. 104 123304
    [13]
    Jan F et al 2012 J. Appl. Phys. 112 063305
    [14]
    Ma J and Pu Y K 2003 Phys. Plasmas 10 4118
    [15]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley)
    [16]
    Chen F F and Chang J P 2012 Lecture Notes on Principles of Plasma Processing (New York: Springer)
    [17]
    Meziani T, Colpo P and Rossi F 2006 J. Appl. Phys. 99 033303
    [18]
    Kortshagen U, Gibson N D and Lawler J E 1996 J. Phys. D:Appl. Phys. 29 1224
    [19]
    Seo S H et al 1999 Phys. Plasmas 6 614
    [20]
    Lee M H et al 2007 Appl. Phys. Lett. 90 191502
    [21]
    Lee Y W, Lee H L and Chung T H 2011 J. Appl. Phys. 109 113302
    [22]
    Lee H C 2018 Appl. Phys. Rev. 5 011108
    [23]
    Gao F et al 2010 Phys. Plasmas 17 103507
    [24]
    Jing Xu et al 2015 Chin. Phys. B 24 115201
    [25]
    Liu W et al 2013 Phys. Plasmas 20 123513
    [26]
    Gao F et al 2013 Chin. Phys. B 22 115205
    [27]
    Gao F et al 2012 Chin. Phys. B 21 075203
    [28]
    Lee J K, Lee H C and Chung C W 2011 Curr. Appl. Phys.11 S149
    [29]
    Seo S H, Chung C and Chang H Y 2000 Surf. Coat. Technol.131 1
    [30]
    Guerra V, Galiaskarov E and Loureiro J 2003 Chem. Phys.Lett. 371 576
    [31]
    Bang J Y et al 2012 Appl. Phys. Lett. 100 164107
    [32]
    Han D et al 2015 Curr. Appl. Phys. 15 1036
    [33]
    Khattak Z I, Shafiq M and Khan A W 2019 IEEE Trans.Plasma Sci. 47 2665
    [34]
    Lee M H, Jang S H and Chung C W 2007 J. Appl. Phys. 101 033305
    [35]
    Godyak V A and Demidov V I 2011 J. Phys. D: Appl. Phys. 44 233001
    [36]
    Raju G G 2005 Gaseous Electronics: Theory and Practice (Boca Raton, FL: CRC Press)
    [37]
    Younus M and Rehman N U 2017 Optik 130 877
    [38]
    Pu Y K et al 2005 Plasma Phys. Control. Fusion 48 61
    [39]
    Lee H C, Lee M H and Chung C W 2010 Appl. Phys. Lett. 96 041503
    [40]
    Lee H C and Chung C W 2012 Phys. Plasmas 19 043505
    [41]
    Chung C and Chang H Y 2002 Appl. Phys. Lett. 80 1725
  • Related Articles

    [1]Jingyuan FU (付敬原), Pengfei LIU (刘鹏飞), Xishuo WEI (魏西硕), Zhihong LIN (林志宏), Nathaniel Mandrachia FERRARO, Raffi NAZIKIAN. Effects of resonant magnetic perturbations on radial electric fields in DIII-D tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105104. DOI: 10.1088/2058-6272/ac190e
    [2]Haotian HUANG (黄浩天), Lu WANG (王璐). Effects of resonant magnetic perturbations on the loss of energetic ions in tokamak pedestal[J]. Plasma Science and Technology, 2020, 22(10): 105101. DOI: 10.1088/2058-6272/aba58c
    [3]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [4]Gerhard FRANZ, Ralf MEYER, Markus-Christian AMANN. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance[J]. Plasma Science and Technology, 2017, 19(12): 125503. DOI: 10.1088/2058-6272/aa89e0
    [5]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [6]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [7]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
    [8]RAN Huijuan(冉慧娟), WANG Lei(王磊), WANG Jue(王珏), WANG Tao(王涛), YAN Ping(严萍). Discharge Characteristics of SF6 in a Non-Uniform Electric Field Under Repetitive Nanosecond Pulses[J]. Plasma Science and Technology, 2014, 16(5): 465-470. DOI: 10.1088/1009-0630/16/5/05
    [9]HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04
    [10]Azusa FUKANO, Akiyoshi HATAYAMA. Electric Potential in Surface Produced Negative Ion Source with Magnetic Field Increasing Toward a Wall[J]. Plasma Science and Technology, 2013, 15(3): 266-270. DOI: 10.1088/1009-0630/15/3/15

Catalog

    Article views (302) PDF downloads (153) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return