Advanced Search+
Tianhang MENG (孟天航), Zhongxi NING (宁中喜), Daren YU (于达仁). Impact of exterior electron emission on the self-sustaining margin of hollow cathode discharge[J]. Plasma Science and Technology, 2020, 22(9): 94001-094001. DOI: 10.1088/2058-6272/ab7902
Citation: Tianhang MENG (孟天航), Zhongxi NING (宁中喜), Daren YU (于达仁). Impact of exterior electron emission on the self-sustaining margin of hollow cathode discharge[J]. Plasma Science and Technology, 2020, 22(9): 94001-094001. DOI: 10.1088/2058-6272/ab7902

Impact of exterior electron emission on the self-sustaining margin of hollow cathode discharge

Funds: The authors wish to thank National Natural Science Foun- dation of China (Nos. 61571166 and 51736003) for sup- porting the research.
More Information
  • Received Date: December 10, 2019
  • Revised Date: February 17, 2020
  • Accepted Date: February 21, 2020
  • Hollow cathode researches used to focus on the inner cavity or downstream plume, however, rarely on the gap between the throttling orifice plate and the keeper plate (T-K gap), which was found to impact the self-sustaining margin of hollow cathode discharge in this paper. Near the lower margin, the main power deposition and electron emission and ionization regions would migrate from inner cavity and downstream plume to the T-K gap, in which case, the source and destination of each mA current therein matter for the self-sustaining capability. Changing the metal surfaces in the T-K gap with emissive materials proved effective in lowering the lower margin by supplementing auxiliary thermionic emission, compensating electron loss on cold absorbing walls and suppressing discharge oscillations. By doing so, the lower margin of a 4 A hollow cathode was lowered from 1 to 0.1−0.2 A, enabling it to couple with low power Hall thruster without extra keeper current.
  • [1]
    Lemmer K 2017 Acta Astronaut. 134 231
    [2]
    Levchenko I et al 2018 Appl. Phys. Rev. 5 011104
    [3]
    Lev D et al 2019 Acta Astronaut. 159 213
    [4]
    Tilley D L, de Grys K H and Myers R M 1999 Hall thruster-cathode coupling 35th Joint Propulsion Conference and Exhibit (Los Angeles, USA, 20–24 June, 1999) (https://doi.org/10.2514/6.1999-2865)
    [5]
    McDonald M S and Gallimore A D 2009 Cathode position and orientation effects on cathode coupling in a 6-kW Hall thruster Proc. 31st Int. Electric Propulsion Conf. (Michigan, USA, 20–24 September, 2009) Paper No. IEPC-09-113 (http://electricrocket.org/IEPC/IEPC-2009-113.pdf)
    [6]
    Goebel D M, Jameson K K and Hofer R R 2012 J. Propul.Power 28 355
    [7]
    Miyasaka T et al 2019 Vacuum 167 524
    [8]
    Meng T H et al 2019 Plasma Sources Sci. Technol. 28 035016
    [9]
    Yu D et al 2017 Plasma Sources Sci. Technol. 26 04LT02
    [10]
    Lev D et al 2019 Rev. Mod. Plasma Phys. 3 6
    [11]
    Lev D, Alon G and Appel L 2019 Rev. Sci. Instrum. 90 113303
    [12]
    Pedrini D et al 2018 IEEE Trans. Plasma Sci. 46 296
    [13]
    Mooney M, Baird M and Lemmer K 2019 Featherweight heaterless hollow cathode characterization Proc. 36th Int.Electric Propulsion Conf. Paper No. IEPC-2019-695
    [14]
    Kubota K et al 2019 Trans. Japan Soc. Aeronaut. Space Sci.62 11
    [15]
    Zhang H G et al 2020 J. Propul. Technol. 41 132 (in Chinese)
    [16]
    Kottke N G et al 2019 Comparison of the thermionic emission properties of LaB6 and C12A7 Proc. 36th Int. Electric Propulsion Conf. Paper No. IEPC-2019-644
    [17]
    Jameson K K 2008 Investigations on hollow cathode effects on total thruster efficiency of a 6 kW Hall thruster PhD Thesis University of California (http://pqdtcn.com/thesisDetails/84C196081C083C44AEA4280629C8F070)
    [18]
    Sommerville J D and King L B 2011 J. Propul. Power 27 744
    [19]
    Goebel D M and Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thrusters (New York: Wiley)
    [20]
    Meng T H, Ning Z X and Yu D R 2019 Phys. Plasmas 26 093510
    [21]
    Puech V and Mizzi S 1991 J. Phys. D: Appl. Phys. 24 1974
    [22]
    Liu H et al 2015 IEEE Trans. Plasma Sci. 43 4024
    [23]
    Goebel D M et al 2007 Phys. Plasmas 14 103508
    [24]
    Levko D et al 2015 Phys. Plasmas 22 113502
    [25]
    Jorns B A, Mikellides I G and Goebel D M 2014 Phys. Rev. E 90 063106
    [26]
    Qin Y et al 2016 Phys. Plasmas 23 023501
    [27]
    Kudryavtsev A A, Smirnov A S and Tsendin L D 2010 Physics of Glow Discharge (St. Petersburg: Lan’) p 62 (in Russian)
  • Related Articles

    [1]Longfei Ma, jinhao liu, Jiahao Fu, Jianwu He, Li Duan, Qi Kang. Performance of radio frequency ion thruster with polytetrafluoroethylene propellant embedded in discharge chamber[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adae44
    [2]Zongqi XU, Pingyang WANG, Dongsheng CAI, Rui TAN, Wenjing JIANG. Performance investigation of a low-power Hall thruster fed on iodine propellant[J]. Plasma Science and Technology, 2024, 26(6): 065501. DOI: 10.1088/2058-6272/ad240e
    [3]Zhiwei HUA, Pingyang WANG, Zhongxi NING, Zhanwen YE, Zongqi XU. Early experimental investigation of the C12A7 hollow cathode fed on iodine[J]. Plasma Science and Technology, 2022, 24(7): 074004. DOI: 10.1088/2058-6272/ac4fb4
    [4]Xinghua ZHANG, Zhenhua ZHANG, Shaoxia JIA, Ting JIN, Jinghua YANG, Long LI, Fangfang LIU, Yong CAI, Jian CAI. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2022, 24(1): 015506. DOI: 10.1088/2058-6272/ac34e6
    [5]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [6]Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [9]ZHANG Saiqian(张赛谦), DAI Zhongling(戴忠玲), WANG Younian(王友年). Ion Transport to a Photoresist Trench in a Radio Frequency Sheath[J]. Plasma Science and Technology, 2012, 14(11): 958-964. DOI: 10.1088/1009-0630/14/11/03
    [10]DAI Zhongling(戴忠玲), YUE Guang(岳光), WANG Younian(王友年). Simulations of Ion Behaviors in a Photoresist Trench During Plasma Etching Driven by a Radio-Frequency Source[J]. Plasma Science and Technology, 2012, 14(3): 240-244. DOI: 10.1088/1009-0630/14/3/10
  • Cited by

    Periodical cited type(18)

    1. Lu, S., Dong, L., Guo, N. et al. Coupling operation characterization of the Hall micro thruster with a thermal emission cathode with a grid. Vacuum, 2025. DOI:10.1016/j.vacuum.2025.114152
    2. Liang, S., Xu, L., Lu, S. et al. Development of a micro-thrust measurement system and ground thrust measurement of the micro Hall thruster for Taiji mission. Acta Astronautica, 2025. DOI:10.1016/j.actaastro.2025.01.047
    3. Gou, Y., Pang, A., Liu, H. et al. Design of feedback control for field emission thrusters with wide thrust range and fast response. Advances in Space Research, 2025. DOI:10.1016/j.asr.2025.01.032
    4. Fu, C., Dong, Y., Li, Y. et al. Neutralizer-free extraction characteristics of micro RF ion thruster | [微型射频离子推力器自中和引出特性研究]. Tuijin Jishu/Journal of Propulsion Technology, 2024, 45(9): 260-268. DOI:10.13675/j.cnki.tjjs.2305052
    5. Lu, S., Xu, L., Guo, N. et al. Study on the electron emission characteristics of a thermal emission cathode with grid for micro-electric thruster. Vacuum, 2024. DOI:10.1016/j.vacuum.2023.112850
    6. Wang, Y., Wu, Z., Huang, T. et al. Operating Characteristics of Carbon Nanotube Neutralizer for Space Exploration Missions | [碳纳米管中和器工作特性研究]. Journal of Deep Space Exploration, 2024, 11(2): 151-158. DOI:10.15982/j.issn.2096-9287.2024.20240004
    7. Chen, Z., Xiao, D., Du, H. et al. Research on Long Life Carbon Nanotube Cathodes for Deep Space Exploration Missions | [面向深空探测任务的长寿命碳纳米管阴极研究]. Journal of Deep Space Exploration, 2024, 11(2): 124-131. DOI:10.15982/j.issn.2096-9287.2024.20230152
    8. Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036
    9. Chen, M., Zhang, C., He, J. et al. A Design Method for Redundant Microthruster Layout with Allocation Error. International Journal of Aerospace Engineering, 2024. DOI:10.1155/2024/7627257
    10. Jiang, W., Wei, L., Yang, X. et al. Influence of matching network and frequency on the effective quality factor and performance of a miniature radio frequency ion thruster. Journal of Applied Physics, 2023, 134(3): 033301. DOI:10.1063/5.0147744
    11. Lu, S., Dong, L., Luo, W. et al. Review of closed drift thruster neutral flow dynamics. AIP Advances, 2023, 13(7): 070701. DOI:10.1063/5.0152272
    12. Jiang, W., Wei, L., Yang, X. et al. Influence of coil structure and position on the performance of miniature radio frequency ion thrusters. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.111911
    13. Liu, P., Jiang, K., Fan, S. Carbon nano materials vacuum electronics. 2023. DOI:10.1109/IVEC56627.2023.10157526
    14. Geng, Y., Zhu, R., Maimaituerxun, M. Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 2022, 29(51): 76668-76686. DOI:10.1007/s11356-022-23283-3
    15. Meng, S., Zhu, X., Kang, Y. et al. Investigation on the radial distribution of electron density in a miniaturized ECR ion thruster of wide-range operations. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111138
    16. He, J.-W., Duan, L., Kang, Q. Ground performance tests and evaluation of RF ion microthrusters for Taiji-1 satellite. International Journal of Modern Physics A, 2021, 36(11-12): 2140014. DOI:10.1142/S0217751X21400145
    17. Xu, S.-Y., Xu, L.-X., Cong, L.-X. et al. First result of orbit verification of Taiji-1 hall micro thruster. International Journal of Modern Physics A, 2021, 36(11-12): 2140013. DOI:10.1142/S0217751X21400133
    18. Wang, Z.-L., Min, J. Electronic noise analysis and in-orbit resolution verification of an electrostatic accelerometer. International Journal of Modern Physics A, 2021, 36(11-12): 2140009. DOI:10.1142/S0217751X21400091

    Other cited types(0)

Catalog

    Article views (145) PDF downloads (198) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return