Citation: | Sungho SHIN, Youngmin MOON, Jaepil LEE, Eunsung KWON, Kyihwan PARK, Sungho JEONG. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis[J]. Plasma Science and Technology, 2020, 22(7): 74011-074011. DOI: 10.1088/2058-6272/ab7d48 |
[1] |
International Stainless Steel Forum 2019 Stainless Steel in Figures 2019 (http://worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2019_English_public_version.pdf)
|
[2] |
Davis J R 2000 Alloy Digest Sourcebook: Stainless Steels (Cleveland, OH: ASM International)
|
[3] |
Johnson J et al 2008 Energy Policy 36 181
|
[4] |
Lo K H, Shek C H and Lai J K L 2009 Mater. Sci. Eng. R Rep.65 39
|
[5] |
Kashiwakura S and Wagatsuma K 2015 ISIJ Int. 55 2391
|
[6] |
Gurell J et al 2012 Spectrochim. Acta B 74–75 46
|
[7] |
Campanella B et al 2017 Spectrochim. Acta B 134 52
|
[8] |
Cremers D A and Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (New York: Wiley)
|
[9] |
Ruiz J et al 2017 J. Anal. At. Spectrom. 32 1119
|
[10] |
Noll R et al 2014 Spectrochim. Acta B 93 41
|
[11] |
Aberkane S M et al 2017 Anal. Methods 9 3696
|
[12] |
Goode S R et al 2000 J. Anal. At. Spectrom. 15 1133
|
[13] |
Kong H Y et al 2015 Plasma Sci. Technol. 17 964
|
[14] |
Cabalín L M et al 2010 Spectrochim. Acta B 65 680
|
[15] |
Cui M C et al 2019 Plasma Sci. Technol. 21 034007
|
[16] |
Wang Z Z et al 2020 ISIJ Int. (https://doi.org/10.2355/isijinternational.ISIJINT-2019-317)
|
[17] |
Acosta D, Garcia O and Aponte A 2006 Laser triangulation for shape acquisition in a 3D scanner plus scan Electronics, Robotics and Automotive Mechanics Conf. (CERMA’06) (Cuernavaca, Mexico, 26–29 September 2006) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/CERMA.2006.54)
|
[18] |
SRM 2018 NIST Standard Reference Materials, NIST SP 260-176 (https://doi.org/10.6028/NIST.SP.260-176-2018)
|
[19] |
Brammer Standard Company, Inc., Houston, USA (http://brammerstandard.com)
|
[20] |
Schindelin J et al 2012 Nat. Methods 9 676
|
[21] |
Kim C K et al 2013 Opt. Lett. 38 3032
|
[22] |
Kim C K et al 2014 Opt Lett. 39 3818
|
[23] |
Shin S et al 2019 Plasma Sci. Technol. 21 034011
|
[24] |
Zhang P et al 2017 A method derived from genetic algorithm,principal component analysis and artificial neural networks to enhance classification capability of laser-induced breakdown spectroscopy Proc. SPIE 10461 1046107
|
1. | Shentu, L., Peng, D., Xi, J. A novel neural network architecture dedicated for LIBS spectrum analysis with its application to steel pipe classification. Measurement Science and Technology, 2025, 36(1): 015215. DOI:10.1088/1361-6501/ad9166 | |
2. | Xu, X., Liu, J., Cui, F. et al. Research progress in classified recycling technology and application of scrap metals | [废旧金属分类回收技术及应用研究进展]. Yejin Fenxi/Metallurgical Analysis, 2024, 44(10): 31-37. DOI:10.13228/j.boyuan.issn1000-7571.012434 | |
3. | Jeon, G., Kim, S., Kim, Y.J. et al. Identification of fluoroquinolone-resistant Mycobacterium tuberculosis through high-level data fusion of Raman and laser-induced breakdown spectroscopy. Analytical Methods, 2024, 16(37): 6349-6355. DOI:10.1039/d4ay01331j | |
4. | Fan, B., Qin, X., Wu, Q. et al. Instance segmentation algorithm for sorting dismantling components of end-of-life vehicles. Engineering Applications of Artificial Intelligence, 2024. DOI:10.1016/j.engappai.2024.108318 | |
5. | Srivastava, E., Kim, H., Lee, J. et al. Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials. Applied Spectroscopy, 2023, 77(6): 603-615. DOI:10.1177/00037028231170234 | |
6. | Song, J., Qin, X., Lyu, Q. et al. Classification study of composite insulator chemical formulations based on laser-induced breakdown spectroscopy. Electrical Engineering, 2023, 105(3): 1775-1782. DOI:10.1007/s00202-023-01771-0 | |
7. | Bai, W., Chen, W., Yang, C. et al. Fine Classification Method of Stainless Steel Based on LIBS Technology | [基于 LIBS 技术的不锈钢精细分类方法]. Laser and Optoelectronics Progress, 2022, 59(24): 2330001. DOI:10.3788/LOP202259.2330001 | |
8. | Hou, J., Wang, Y. Rapid identification of rice seed based on inverse Fourier transform of laser-induced breakdown spectroscopy. Optoelectronics Letters, 2022, 18(8): 495-501. DOI:10.1007/s11801-022-1137-3 | |
9. | Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274 | |
10. | Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2020, 35(11): 2410-2474. DOI:10.1039/d0ja90067b | |
11. | Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7 |