Advanced Search+
Sungho SHIN, Youngmin MOON, Jaepil LEE, Eunsung KWON, Kyihwan PARK, Sungho JEONG. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis[J]. Plasma Science and Technology, 2020, 22(7): 74011-074011. DOI: 10.1088/2058-6272/ab7d48
Citation: Sungho SHIN, Youngmin MOON, Jaepil LEE, Eunsung KWON, Kyihwan PARK, Sungho JEONG. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis[J]. Plasma Science and Technology, 2020, 22(7): 74011-074011. DOI: 10.1088/2058-6272/ab7d48

Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis

Funds: This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250003) and partially supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008763, The Competency Development Program for Industry Specialist)
More Information
  • Received Date: December 26, 2019
  • Revised Date: March 02, 2020
  • Accepted Date: March 05, 2020
  • Laser-induced breakdown spectroscopy (LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis. In this work, a method for intensity-ratio- based LIBS classification of stainless steel applicable to highly fluctuating LIBS signal conditions is proposed. The spectral line pairs for intensity ratio calculation are selected according to elemental concentration and upper levels of emission lines. It is demonstrated that the classification accuracy can be significantly improved from that of full-spectra principal component analysis or intensity-based analysis. The proposed method is considered to be suited to an industrial scrap sorting system that requires minimal maintenance and low system price.
  • [1]
    International Stainless Steel Forum 2019 Stainless Steel in Figures 2019 (http://worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2019_English_public_version.pdf)
    [2]
    Davis J R 2000 Alloy Digest Sourcebook: Stainless Steels (Cleveland, OH: ASM International)
    [3]
    Johnson J et al 2008 Energy Policy 36 181
    [4]
    Lo K H, Shek C H and Lai J K L 2009 Mater. Sci. Eng. R Rep.65 39
    [5]
    Kashiwakura S and Wagatsuma K 2015 ISIJ Int. 55 2391
    [6]
    Gurell J et al 2012 Spectrochim. Acta B 74–75 46
    [7]
    Campanella B et al 2017 Spectrochim. Acta B 134 52
    [8]
    Cremers D A and Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (New York: Wiley)
    [9]
    Ruiz J et al 2017 J. Anal. At. Spectrom. 32 1119
    [10]
    Noll R et al 2014 Spectrochim. Acta B 93 41
    [11]
    Aberkane S M et al 2017 Anal. Methods 9 3696
    [12]
    Goode S R et al 2000 J. Anal. At. Spectrom. 15 1133
    [13]
    Kong H Y et al 2015 Plasma Sci. Technol. 17 964
    [14]
    Cabalín L M et al 2010 Spectrochim. Acta B 65 680
    [15]
    Cui M C et al 2019 Plasma Sci. Technol. 21 034007
    [16]
    Wang Z Z et al 2020 ISIJ Int. (https://doi.org/10.2355/isijinternational.ISIJINT-2019-317)
    [17]
    Acosta D, Garcia O and Aponte A 2006 Laser triangulation for shape acquisition in a 3D scanner plus scan Electronics, Robotics and Automotive Mechanics Conf. (CERMA’06) (Cuernavaca, Mexico, 26–29 September 2006) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/CERMA.2006.54)
    [18]
    SRM 2018 NIST Standard Reference Materials, NIST SP 260-176 (https://doi.org/10.6028/NIST.SP.260-176-2018)
    [19]
    Brammer Standard Company, Inc., Houston, USA (http://brammerstandard.com)
    [20]
    Schindelin J et al 2012 Nat. Methods 9 676
    [21]
    Kim C K et al 2013 Opt. Lett. 38 3032
    [22]
    Kim C K et al 2014 Opt Lett. 39 3818
    [23]
    Shin S et al 2019 Plasma Sci. Technol. 21 034011
    [24]
    Zhang P et al 2017 A method derived from genetic algorithm,principal component analysis and artificial neural networks to enhance classification capability of laser-induced breakdown spectroscopy Proc. SPIE 10461 1046107
  • Related Articles

    [1]Longfei Ma, jinhao liu, Jiahao Fu, Jianwu He, Li Duan, Qi Kang. Performance of radio frequency ion thruster with polytetrafluoroethylene propellant embedded in discharge chamber[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adae44
    [2]Zongqi XU, Pingyang WANG, Dongsheng CAI, Rui TAN, Wenjing JIANG. Performance investigation of a low-power Hall thruster fed on iodine propellant[J]. Plasma Science and Technology, 2024, 26(6): 065501. DOI: 10.1088/2058-6272/ad240e
    [3]Zhiwei HUA, Pingyang WANG, Zhongxi NING, Zhanwen YE, Zongqi XU. Early experimental investigation of the C12A7 hollow cathode fed on iodine[J]. Plasma Science and Technology, 2022, 24(7): 074004. DOI: 10.1088/2058-6272/ac4fb4
    [4]Xinghua ZHANG, Zhenhua ZHANG, Shaoxia JIA, Ting JIN, Jinghua YANG, Long LI, Fangfang LIU, Yong CAI, Jian CAI. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2022, 24(1): 015506. DOI: 10.1088/2058-6272/ac34e6
    [5]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [6]Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [9]ZHANG Saiqian(张赛谦), DAI Zhongling(戴忠玲), WANG Younian(王友年). Ion Transport to a Photoresist Trench in a Radio Frequency Sheath[J]. Plasma Science and Technology, 2012, 14(11): 958-964. DOI: 10.1088/1009-0630/14/11/03
    [10]DAI Zhongling(戴忠玲), YUE Guang(岳光), WANG Younian(王友年). Simulations of Ion Behaviors in a Photoresist Trench During Plasma Etching Driven by a Radio-Frequency Source[J]. Plasma Science and Technology, 2012, 14(3): 240-244. DOI: 10.1088/1009-0630/14/3/10
  • Cited by

    Periodical cited type(18)

    1. Cui, Y., Ren, J., Wu, K. et al. Modelling the effect of deposited grid material on the power coupling of radio frequency ion thrusters. Journal of Electric Propulsion, 2025, 4(1): 2. DOI:10.1007/s44205-025-00101-9
    2. Levchenko, I., Goebel, D., Pedrini, D. et al. Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 2025. DOI:10.1016/j.paerosci.2023.100900
    3. Saifutdinova, A.A., Makushev, A.A., Gatiyatullin, F.R. et al. Simulation of the Plasma Parameters Dynamics in Iodine in an Electric Rocket Engine based on ICP Discharge. High Energy Chemistry, 2024, 58(Suppl 2): S215-S224. DOI:10.1134/S0018143924700899
    4. Saifutdinova, A.A., Makushev, A.A., Sysoev, S.S. et al. Parametric Analysis of Plasma-Chemical Processes in Electrodeless RF and Microwave Discharges in Iodine Vapor. High Energy Chemistry, 2024, 58(5): 575-582. DOI:10.1134/S0018143924700486
    5. Xu, Z., Wang, P., Cai, D. et al. Performance investigation of a low-power Hall thruster fed on iodine propellant. Plasma Science and Technology, 2024, 26(6): 065501. DOI:10.1088/2058-6272/ad240e
    6. Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036
    7. Shu, M., Wang, G., Xu, Z. et al. Simulation Study on Discharge Characteristics of Radio Frequency Ion Thruster with Iodine Working Medium | [碘工质射频离子推力器放电特性仿真研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(2): 125-131. DOI:10.13922/j.cnki.cjvst.202307002
    8. Li, X., Zeng, M., Liu, H. et al. Iodine electron cyclotron resonance plasma source for electric propulsion | [应用于电推进的碘工质电子回旋共振等离子体源]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(22): 225202. DOI:10.7498/aps.72.20230785
    9. Lafleur, T., Habl, L., Rossi, E.Z. et al. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, 31(11): 114001. DOI:10.1088/1361-6595/ac9ad7
    10. Ye, Z.-W., Wang, P.-Y., Hua, Z.-W. et al. Feeding Design and Experimental Study of Iodine Electric Propulsion System | [碘工质电推进系统的储供设计及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(9): 21012. DOI:10.13675/j.cnki.tjjs.210125
    11. Esteves, B., Marmuse, F., Drag, C. et al. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, 31(8): 085007. DOI:10.1088/1361-6595/ac8288
    12. Hua, Z., Wang, P., Ning, Z. et al. Early experimental investigation of the C12A7 hollow cathode fed on iodine. Plasma Science and Technology, 2022, 24(7): 074004. DOI:10.1088/2058-6272/ac4fb4
    13. Xu, Z., Tian, L., Ye, Z. et al. Design and Experimental Research on Principle Prototype of Iodine Hall Thruster | [碘工质霍尔推力器原理样机设计与实验研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2022, 42(6): 456-461. DOI:10.13922/j.cnki.cjvst.202112003
    14. Vavilov, I.S., Fedyanin, V.V., Yachmenev, P.S. et al. Determination of the parameters of the microwave ion thruster by the calorimetric method. Journal of Physics: Conference Series, 2022, 2182(1): 012067. DOI:10.1088/1742-6596/2182/1/012067
    15. Ashby, J., Rosset, S., Henke, E.F.M. et al. One Soft Step: Bio-Inspired Artificial Muscle Mechanisms for Space Applications. Frontiers in Robotics and AI, 2022. DOI:10.3389/frobt.2021.792831
    16. ZHANG, X., ZHANG, Z., JIA, S. et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2022, 24(1): 015506. DOI:10.1088/2058-6272/ac34e6
    17. Levko, D., Raja, L.L. Fluid modeling of inductively coupled iodine plasma for electric propulsion conditions. Journal of Applied Physics, 2021, 130(17): 173302. DOI:10.1063/5.0063578
    18. O’reilly, D., Herdrich, G., Kavanagh, D.F. Electric propulsion methods for small satellites: A review. Aerospace, 2021, 8(1): 1-30. DOI:10.3390/aerospace8010022

    Other cited types(0)

Catalog

    Article views (130) PDF downloads (176) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return