Advanced Search+
Sungho SHIN, Youngmin MOON, Jaepil LEE, Eunsung KWON, Kyihwan PARK, Sungho JEONG. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis[J]. Plasma Science and Technology, 2020, 22(7): 74011-074011. DOI: 10.1088/2058-6272/ab7d48
Citation: Sungho SHIN, Youngmin MOON, Jaepil LEE, Eunsung KWON, Kyihwan PARK, Sungho JEONG. Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis[J]. Plasma Science and Technology, 2020, 22(7): 74011-074011. DOI: 10.1088/2058-6272/ab7d48

Improvement in classification accuracy of stainless steel alloys by laser-induced breakdown spectroscopy based on elemental intensity ratio analysis

Funds: This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250003) and partially supported by Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008763, The Competency Development Program for Industry Specialist)
More Information
  • Received Date: December 26, 2019
  • Revised Date: March 02, 2020
  • Accepted Date: March 05, 2020
  • Laser-induced breakdown spectroscopy (LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis. In this work, a method for intensity-ratio- based LIBS classification of stainless steel applicable to highly fluctuating LIBS signal conditions is proposed. The spectral line pairs for intensity ratio calculation are selected according to elemental concentration and upper levels of emission lines. It is demonstrated that the classification accuracy can be significantly improved from that of full-spectra principal component analysis or intensity-based analysis. The proposed method is considered to be suited to an industrial scrap sorting system that requires minimal maintenance and low system price.
  • [1]
    International Stainless Steel Forum 2019 Stainless Steel in Figures 2019 (http://worldstainless.org/Files/issf/non-image-files/PDF/ISSF_Stainless_Steel_in_Figures_2019_English_public_version.pdf)
    [2]
    Davis J R 2000 Alloy Digest Sourcebook: Stainless Steels (Cleveland, OH: ASM International)
    [3]
    Johnson J et al 2008 Energy Policy 36 181
    [4]
    Lo K H, Shek C H and Lai J K L 2009 Mater. Sci. Eng. R Rep.65 39
    [5]
    Kashiwakura S and Wagatsuma K 2015 ISIJ Int. 55 2391
    [6]
    Gurell J et al 2012 Spectrochim. Acta B 74–75 46
    [7]
    Campanella B et al 2017 Spectrochim. Acta B 134 52
    [8]
    Cremers D A and Radziemski L J 2006 Handbook of Laser-Induced Breakdown Spectroscopy (New York: Wiley)
    [9]
    Ruiz J et al 2017 J. Anal. At. Spectrom. 32 1119
    [10]
    Noll R et al 2014 Spectrochim. Acta B 93 41
    [11]
    Aberkane S M et al 2017 Anal. Methods 9 3696
    [12]
    Goode S R et al 2000 J. Anal. At. Spectrom. 15 1133
    [13]
    Kong H Y et al 2015 Plasma Sci. Technol. 17 964
    [14]
    Cabalín L M et al 2010 Spectrochim. Acta B 65 680
    [15]
    Cui M C et al 2019 Plasma Sci. Technol. 21 034007
    [16]
    Wang Z Z et al 2020 ISIJ Int. (https://doi.org/10.2355/isijinternational.ISIJINT-2019-317)
    [17]
    Acosta D, Garcia O and Aponte A 2006 Laser triangulation for shape acquisition in a 3D scanner plus scan Electronics, Robotics and Automotive Mechanics Conf. (CERMA’06) (Cuernavaca, Mexico, 26–29 September 2006) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/CERMA.2006.54)
    [18]
    SRM 2018 NIST Standard Reference Materials, NIST SP 260-176 (https://doi.org/10.6028/NIST.SP.260-176-2018)
    [19]
    Brammer Standard Company, Inc., Houston, USA (http://brammerstandard.com)
    [20]
    Schindelin J et al 2012 Nat. Methods 9 676
    [21]
    Kim C K et al 2013 Opt. Lett. 38 3032
    [22]
    Kim C K et al 2014 Opt Lett. 39 3818
    [23]
    Shin S et al 2019 Plasma Sci. Technol. 21 034011
    [24]
    Zhang P et al 2017 A method derived from genetic algorithm,principal component analysis and artificial neural networks to enhance classification capability of laser-induced breakdown spectroscopy Proc. SPIE 10461 1046107
  • Cited by

    Periodical cited type(11)

    1. Shentu, L., Peng, D., Xi, J. A novel neural network architecture dedicated for LIBS spectrum analysis with its application to steel pipe classification. Measurement Science and Technology, 2025, 36(1): 015215. DOI:10.1088/1361-6501/ad9166
    2. Xu, X., Liu, J., Cui, F. et al. Research progress in classified recycling technology and application of scrap metals | [废旧金属分类回收技术及应用研究进展]. Yejin Fenxi/Metallurgical Analysis, 2024, 44(10): 31-37. DOI:10.13228/j.boyuan.issn1000-7571.012434
    3. Jeon, G., Kim, S., Kim, Y.J. et al. Identification of fluoroquinolone-resistant Mycobacterium tuberculosis through high-level data fusion of Raman and laser-induced breakdown spectroscopy. Analytical Methods, 2024, 16(37): 6349-6355. DOI:10.1039/d4ay01331j
    4. Fan, B., Qin, X., Wu, Q. et al. Instance segmentation algorithm for sorting dismantling components of end-of-life vehicles. Engineering Applications of Artificial Intelligence, 2024. DOI:10.1016/j.engappai.2024.108318
    5. Srivastava, E., Kim, H., Lee, J. et al. Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials. Applied Spectroscopy, 2023, 77(6): 603-615. DOI:10.1177/00037028231170234
    6. Song, J., Qin, X., Lyu, Q. et al. Classification study of composite insulator chemical formulations based on laser-induced breakdown spectroscopy. Electrical Engineering, 2023, 105(3): 1775-1782. DOI:10.1007/s00202-023-01771-0
    7. Bai, W., Chen, W., Yang, C. et al. Fine Classification Method of Stainless Steel Based on LIBS Technology | [基于 LIBS 技术的不锈钢精细分类方法]. Laser and Optoelectronics Progress, 2022, 59(24): 2330001. DOI:10.3788/LOP202259.2330001
    8. Hou, J., Wang, Y. Rapid identification of rice seed based on inverse Fourier transform of laser-induced breakdown spectroscopy. Optoelectronics Letters, 2022, 18(8): 495-501. DOI:10.1007/s11801-022-1137-3
    9. Pedarnig, J.D., Trautner, S., Grünberger, S. et al. Review of element analysis of industrial materials by in-line laser—induced breakdown spectroscopy (Libs). Applied Sciences (Switzerland), 2021, 11(19): 9274. DOI:10.3390/app11199274
    10. Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2020, 35(11): 2410-2474. DOI:10.1039/d0ja90067b
    11. Hou, Z., Jeong, S., Deguchi, Y. et al. Way-out for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2020, 22(7): 070101. DOI:10.1088/2058-6272/ab95f7

    Other cited types(0)

Catalog

    Article views (130) PDF downloads (176) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return