Advanced Search+
Jianwu HE (贺建武), Peng LIU (柳鹏), Runlian GAO (高润莲), Changbin XUE (薛长斌), Longfei MA (马隆飞), Li DUAN (段俐), Qi KANG (康琦). Research on the neutralization control of the RF ion micropropulsion system for the ‘Taiji-1’ satellite mission[J]. Plasma Science and Technology, 2020, 22(9): 94002-094002. DOI: 10.1088/2058-6272/ab7dd5
Citation: Jianwu HE (贺建武), Peng LIU (柳鹏), Runlian GAO (高润莲), Changbin XUE (薛长斌), Longfei MA (马隆飞), Li DUAN (段俐), Qi KANG (康琦). Research on the neutralization control of the RF ion micropropulsion system for the ‘Taiji-1’ satellite mission[J]. Plasma Science and Technology, 2020, 22(9): 94002-094002. DOI: 10.1088/2058-6272/ab7dd5

Research on the neutralization control of the RF ion micropropulsion system for the ‘Taiji-1’ satellite mission

Funds: This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB23030300, XDA1502070901, XDA1502070503).
More Information
  • Received Date: January 06, 2020
  • Revised Date: March 05, 2020
  • Accepted Date: March 08, 2020
  • To achieve the neutralization control requirements of the radio-frequency (RF) ion microthruster (μRIT) in the ‘Taiji-1’ satellite mission, we proposed an active neutralization control solution that is based on the carbon nanotube field emission technology. The carbon nanotube field emission neutralizer (CNTN) has the characteristics of light weight, small size, and propellantless, which is especially suitable for the neutralization control tasks of ion microthrusters. The Institute of Mechanics, Chinese Academy of Sciences, in collaboration with Tsinghua University, has successfully developed a CNTN to meet mission requirements. On the ground, the feasibility of cooperation working between μRIT and CNTN was fully verified, as well as the simulation and experimental study of neutralization control strategy, which finally passed the engineering assessment test. Since the launch of ‘Taiji-1’ satellite on 31 August, 2019, the RF ion micropropulsion system has successfully completed nearly one hundred test missions in space. The test results indicate that CNTN does not have performance degradation, and the neutralization control strategy is effective.
  • [1]
    Hu W R and Wu Y L 2017 Natl Sci. Rev. 4 685
    [2]
    Kent B J et al 2005 Class. Quantum Grav. 22 S483
    [3]
    Chinese satellite tests space-based gravitational wave detection technologies (https://chinadaily.com.cn/a/201909/20/WS5d84cebaa310cf3e3556cac6.html)
    [4]
    Luo Z R, Liu H S and Jin G 2018 Opt. Laser Technol. 105 146
    [5]
    Wang Z et al 2018 Chin. Opt. 11 131 (in Chinese)
    [6]
    Marrese-Reading C M and Polk J E 2002 Spacecraft propulsion applications for field emission cathodes Proc.14th Int. Vacuum Microelectronics Conf. (Davis, CA, USA) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/IVMC.2001.939684)
    [7]
    Aplin K L and Tarakanov V P 2004 Modelling studies of charged particle interactions for a space application Proc. Institute of Physics Conf. on Electrostatics (Edinburgh) (Taylor & Francis)
    [8]
    Genovese A et al 2012 Neutralization tests of a mN FEEP thruster Proc. 32nd Joint Propulsion Conf. and Exhibit (Lake Buena Vista, FL, USA) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1996-2725)
    [9]
    He J W et al 2018 Plasma Sci. Technol. 20 025403
    [10]
    Takao Y et al 2016 Japan. J. Appl. Phys. 55 07LD09
    [11]
    Pedrini D et al 2018 IEEE Trans. Plasma Sci. 46 296
    [12]
    Gasdaska C et al 2004 Testing of carbon nanotube field emission cathodes Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Fort Lauderdale, FL, USA) (Reston, VA: AIAA) (https://doi.org/10.2514/6.2004-3427)
    [13]
    Hruby P et al 2019 Overview of Busek electric propulsion 36th IEPC (Vienna: University of Vienna)
    [14]
    Wang J 2010 AIP Conf. Proc. 1233 282
    [15]
    Othmer C et al 2000 Phys. Plasmas 7 5242
    [16]
    Sanborn G et al 2013 Appl. Phys. A 110 99
    [17]
    Song Y J, Li J and Ouyang W 2019 IEEE Trans. Electron Devices 66 71
    [18]
    Williams L T et al 2010 IEEE Trans. Electron Devices 57 3163
    [19]
    Liu P et al 2018 Nanotechnology 29 345601
  • Related Articles

    [1]Zhaonan DING (丁兆楠), Chonghong ZHANG (张崇宏), Yitao YANG (杨义涛), Yuguang CHEN (陈宇光), Xianlong ZHANG (张宪龙), Yin SONG (宋银), Tongda MA (马通达), Yuping XU (徐玉平), Guangnan LUO (罗广南). Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions[J]. Plasma Science and Technology, 2020, 22(5): 55601-055601. DOI: 10.1088/2058-6272/ab62e5
    [2]Someswar DUTTA, Y PARAVASTU, J DHONGDE, H CHUDASMA, S GEORGE, K DHANANI, A MAKWANA, C DODIYA, P VARMORA, D K SHARMA, A K SINGH, U KUMAR, D RAVAL, U PRASAD, Z KHAN, R SRINIVASAN, D RAJU. Numerical simulation and experiment of error field measurement using luminous trace of electron beam in SST-1[J]. Plasma Science and Technology, 2019, 21(10): 105101. DOI: 10.1088/2058-6272/ab294
    [3]Kunihiro OGAWA, Mitsutaka ISOBE, Takeo NISHITANI, Sadayoshi MURAKAMI, Ryosuke SEKI, Hideo NUGA, Neng PU, Masaki OSAKABE, LHD Experiment Group. Study of first orbit losses of 1 MeV tritons using the Lorentz orbit code in the LHD[J]. Plasma Science and Technology, 2019, 21(2): 25102-025102. DOI: 10.1088/2058-6272/aaeba8
    [4]Yizhou JIN (金逸舟), Juan YANG (杨涓), Jun SUN (孙俊), Xianchuang LIU (刘宪闯), Yizhi HUANG (黄益智). Experiment and analysis of the neutralization of the electron cyclotron resonance ion thruster[J]. Plasma Science and Technology, 2017, 19(10): 105502. DOI: 10.1088/2058-6272/aa76d9
    [5]LI Xiang (栗翔), XU Yongjian (许永建), YU Ling (于玲), CHEN Yu (陈宇), HU Chundong (胡纯栋), TAO Ling (陶玲). Analysis of Power Distribution on Beamline Components at Different Neutralization Efficiencies on NBI Test Stand[J]. Plasma Science and Technology, 2016, 18(12): 1215-1219. DOI: 10.1088/1009-0630/18/12/12
    [6]Ziauddin KHAN, Firozkhan PATHAN, Yuvakiran PARAVASTU, Siju GEORGE, Gattu RAMESH, Hima BINDU, Dilip C. RAVAL, Prashant THANKEY, Kalpesh DHANANI, Subrata PRADHAN. Nitrogen Gas Heating and Supply System for SST-1 Tokamak[J]. Plasma Science and Technology, 2013, 15(2): 157-160. DOI: 10.1088/1009-0630/15/2/16
    [7]Subrata PRADHAN, SST- Mission Team. SST-1 Refurbishment Progress: an Update[J]. Plasma Science and Technology, 2013, 15(2): 137-141. DOI: 10.1088/1009-0630/15/2/12
    [8]Amit K Srivastava, Manika Sharma, Imran Mansuri, Atish Sharma, Tushar Raval, Subrata Pradhan. Development and Integration of a Data Acquisition System for SST-1 Phase-1 Plasma Diagnostics[J]. Plasma Science and Technology, 2012, 14(11): 1002-1007. DOI: 10.1088/1009-0630/14/11/08
    [9]LIANG Haoming (梁浩明), XIAO Chijie (肖池阶), ZHOU Guiping(周桂萍), PU Zuyin(濮祖荫), WANG Honggang (王红刚), WANG Xiaogang (王晓钢). Alfvénic Fluctuations in an Interplanetary Coronal Mass Ejection Observed Near 1 AU[J]. Plasma Science and Technology, 2012, 14(2): 102-106. DOI: 10.1088/1009-0630/14/2/04
    [10]QIAN Jinping, GONG Xianzu, LI Jiangang, WAN Baonian, LING Bili, SHEN Biao, TI Ang, Guoqiang. Operation with 1 MA plasma current in EAST[J]. Plasma Science and Technology, 2011, 13(1): 1-2.
  • Cited by

    Periodical cited type(18)

    1. Lu, S., Dong, L., Guo, N. et al. Coupling operation characterization of the Hall micro thruster with a thermal emission cathode with a grid. Vacuum, 2025. DOI:10.1016/j.vacuum.2025.114152
    2. Liang, S., Xu, L., Lu, S. et al. Development of a micro-thrust measurement system and ground thrust measurement of the micro Hall thruster for Taiji mission. Acta Astronautica, 2025. DOI:10.1016/j.actaastro.2025.01.047
    3. Gou, Y., Pang, A., Liu, H. et al. Design of feedback control for field emission thrusters with wide thrust range and fast response. Advances in Space Research, 2025. DOI:10.1016/j.asr.2025.01.032
    4. Fu, C., Dong, Y., Li, Y. et al. Neutralizer-free extraction characteristics of micro RF ion thruster | [微型射频离子推力器自中和引出特性研究]. Tuijin Jishu/Journal of Propulsion Technology, 2024, 45(9): 260-268. DOI:10.13675/j.cnki.tjjs.2305052
    5. Lu, S., Xu, L., Guo, N. et al. Study on the electron emission characteristics of a thermal emission cathode with grid for micro-electric thruster. Vacuum, 2024. DOI:10.1016/j.vacuum.2023.112850
    6. Wang, Y., Wu, Z., Huang, T. et al. Operating Characteristics of Carbon Nanotube Neutralizer for Space Exploration Missions | [碳纳米管中和器工作特性研究]. Journal of Deep Space Exploration, 2024, 11(2): 151-158. DOI:10.15982/j.issn.2096-9287.2024.20240004
    7. Chen, Z., Xiao, D., Du, H. et al. Research on Long Life Carbon Nanotube Cathodes for Deep Space Exploration Missions | [面向深空探测任务的长寿命碳纳米管阴极研究]. Journal of Deep Space Exploration, 2024, 11(2): 124-131. DOI:10.15982/j.issn.2096-9287.2024.20230152
    8. Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036
    9. Chen, M., Zhang, C., He, J. et al. A Design Method for Redundant Microthruster Layout with Allocation Error. International Journal of Aerospace Engineering, 2024. DOI:10.1155/2024/7627257
    10. Jiang, W., Wei, L., Yang, X. et al. Influence of matching network and frequency on the effective quality factor and performance of a miniature radio frequency ion thruster. Journal of Applied Physics, 2023, 134(3): 033301. DOI:10.1063/5.0147744
    11. Lu, S., Dong, L., Luo, W. et al. Review of closed drift thruster neutral flow dynamics. AIP Advances, 2023, 13(7): 070701. DOI:10.1063/5.0152272
    12. Jiang, W., Wei, L., Yang, X. et al. Influence of coil structure and position on the performance of miniature radio frequency ion thrusters. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.111911
    13. Liu, P., Jiang, K., Fan, S. Carbon nano materials vacuum electronics. 2023. DOI:10.1109/IVEC56627.2023.10157526
    14. Geng, Y., Zhu, R., Maimaituerxun, M. Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 2022, 29(51): 76668-76686. DOI:10.1007/s11356-022-23283-3
    15. Meng, S., Zhu, X., Kang, Y. et al. Investigation on the radial distribution of electron density in a miniaturized ECR ion thruster of wide-range operations. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111138
    16. He, J.-W., Duan, L., Kang, Q. Ground performance tests and evaluation of RF ion microthrusters for Taiji-1 satellite. International Journal of Modern Physics A, 2021, 36(11-12): 2140014. DOI:10.1142/S0217751X21400145
    17. Xu, S.-Y., Xu, L.-X., Cong, L.-X. et al. First result of orbit verification of Taiji-1 hall micro thruster. International Journal of Modern Physics A, 2021, 36(11-12): 2140013. DOI:10.1142/S0217751X21400133
    18. Wang, Z.-L., Min, J. Electronic noise analysis and in-orbit resolution verification of an electrostatic accelerometer. International Journal of Modern Physics A, 2021, 36(11-12): 2140009. DOI:10.1142/S0217751X21400091

    Other cited types(0)

Catalog

    Article views (208) PDF downloads (190) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return