Advanced Search+
Zhaonan DING (丁兆楠), Chonghong ZHANG (张崇宏), Yitao YANG (杨义涛), Yuguang CHEN (陈宇光), Xianlong ZHANG (张宪龙), Yin SONG (宋银), Tongda MA (马通达), Yuping XU (徐玉平), Guangnan LUO (罗广南). Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions[J]. Plasma Science and Technology, 2020, 22(5): 55601-055601. DOI: 10.1088/2058-6272/ab62e5
Citation: Zhaonan DING (丁兆楠), Chonghong ZHANG (张崇宏), Yitao YANG (杨义涛), Yuguang CHEN (陈宇光), Xianlong ZHANG (张宪龙), Yin SONG (宋银), Tongda MA (马通达), Yuping XU (徐玉平), Guangnan LUO (罗广南). Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions[J]. Plasma Science and Technology, 2020, 22(5): 55601-055601. DOI: 10.1088/2058-6272/ab62e5

Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions

Funds: This work was sponsored by the National Magnetic Confinement Fusion Program (No. 2011GB108003) and National Natural Science Foundation of China (No. U1532262). We are grateful for the experimental conditions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL).
More Information
  • Received Date: October 10, 2019
  • Revised Date: December 12, 2019
  • Accepted Date: December 16, 2019
  • In the present work, the irradiation hardening behavior of a Chinese low-activation ferritic/ martensitic steel CLF-1, a candidate for fusion reactor blankets, is studied. Specimens were irradiated with high-energy 14N and 56Fe ions at the terminal of a cyclotron to three successively increasing damage levels of 0.05, 0.1 and 0.2 displacements per atom (dpa) at about −50 °C. The energy of the incident ions was dispersed to 11 successively decreasing grades using an energy degrader, thereby generating an atomic displacement damage plateau in the specimens from the surface to a depth of 25 μm, which is sufficiently broad for the Vickers hardness test. Eight different loads (i.e. 98 mN, 196 mN, 490 mN, 980 mN, 1.96 N, 4.9 N, 9.8 N and 19.6 N) were applied to the specimens to obtain the depth profiles of the Vickers hardness by using a microhardness tester. Hardening was observable at the lowest damage level, and increased with increasing irradiation dose. A power-law correlation of the Vickers hardness with the damage level (HV0=1.49+0.76 dpa0.31) is proposed. Testing with a nano-indentation technique was also performed, and a linear relationship between the Vickers micro-hardness and the nanohardness (HV0=0.83H0) was observed. A comparison with other RAFM steels (CLAM, JLF-1, F82H, EUROFER97 etc.) under neutron or charged particle irradiation conditions shows that most of the RAFM steels exhibit similar power-law exponents in the dose dependence of irradiation hardening. The difference in the irradiation hardening may be attributed to differences in microstructure prior to irradiation.
  • [1]
    Zinkle S J and Busby J T 2009 Mater. Today 12 12
    [2]
    Ehrlich K 2001 Fusion Eng. Des. 56–57 71
    [3]
    Wang P H et al 2013 Plasma Sci. Technol. 15 133
    [4]
    Abromeit C 1994 J. Nucl. Mater. 216 78
    [5]
    Kohyama A et al 2000 Fusion Eng. Des. 51–52 789
    [6]
    Serruys Y et al 2008 C. R. Phys. 9 437
    [7]
    Was G S 2015 J. Mater. Res. 30 1158
    [8]
    Busby J T, Hash M C and Was G S 2005 J. Nucl. Mater.336 267
    [9]
    Qian L M et al 2005 Surf. Coat. Technol. 195 264
    [10]
    Yabuuchi K et al 2014 J. Nucl. Mater. 446 142
    [11]
    Wang H et al 2010 Research and development of reduced activation ferritic/martensitic steel CLF-1 at SWIP Proc.23rd IAEA Fusion Energy Conf. (Daejon, Republic of Korea, 11–16 October 2010) (Vienna: IAEA) 2010 www-pub.iaea.org/mtcd/meetings/pdfplus/2010/cn180/cn180_papers/ftp_p1-24.pdf
    [12]
    Wang P H et al 2013 J. Nucl. Mater. 442 S9
    [13]
    Xu Y P et al 2016 Nucl. Instrum. Methods B 388 5
    [14]
    Zhang C H et al 2014 J. Nucl. Mater. 455 61
    [15]
    Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum.Methods B 268 1818
    [16]
    Ding Z N et al 2017 Acta Phys. Sin-Ch. Ed. 11 71 (in Chinese)
    [17]
    Pharr G M, Herbert E G and Gao Y F 2010 Annu. Rev. Mater.Res. 40 271
    [18]
    Nix W D and Gao H J 1998 J. Mech. Phys. Solids 46 411
    [19]
    Huang H F et al 2014 Mater. Trans. 55 1243
    [20]
    Heintze C, Bergner F and Hernández-Mayoral M 2011 J. Nucl.Mater. 417 980
    [21]
    Kasada R et al 2011 Fusion Eng. Des. 86 2658
    [22]
    Ding Z N et al 2017 J. Nucl. Mater. 493 53
    [23]
    Yang Y T et al 2018 J. Nucl. Mater. 498 129
    [24]
    Peng L et al 2016 J. Nucl. Mater. 468 255
    [25]
    Lucon E, Chaouadi R and Decréton M 2004 J. Nucl. Mater.329–333 1078
    [26]
    Dai Y et al 2000 J. Nucl. Mater. 283–287 513
    [27]
    Kasada R and Kimura A 2005 Mater. Trans. 46 475
  • Related Articles

    [1]Zhian HAO, Jianfei LI, Bin XU, Jingfeng YAO, Chengxun YUAN, Ying WANG, Zhongxiang ZHOU, Xiaoou WANG. Composite wave-absorbing structure combining thin plasma and metasurface[J]. Plasma Science and Technology, 2023, 25(4): 045504. DOI: 10.1088/2058-6272/aca13e
    [2]Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
    [3]Xiaoxing ZHANG (张晓星), Yuan TIAN (田远), Zhaolun CUI (崔兆仑), Ju TANG (唐炬). Plasma-assisted abatement of SF6 in a packed bed plasma reactor: understanding the effect of gas composition[J]. Plasma Science and Technology, 2020, 22(5): 55502-055502. DOI: 10.1088/2058-6272/ab65b2
    [4]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [5]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [6]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [7]YAN Shaojian(闫少健), TIAN Canxin(田灿鑫), HUANG Zhihong(黄志宏), YANG Bing(杨兵), FU Dejun(付德君). Structure and Mechanical Properties of CrTiAlN/TiAlN Composite Coatings Deposited by Multi-Arc Ion Plating[J]. Plasma Science and Technology, 2014, 16(10): 969-973. DOI: 10.1088/1009-0630/16/10/12
    [8]HAN Xiang (韩翔), LING Bili (凌必利), GAO Xiang (高翔), LIU Yong (刘永), TI Ang (提昂), LI Erzhong (李二众), XU Liqing (徐立清), WANG Yumin (王嵎民). Measurement of Magnetic Island Width by Multi-Channel ECE Radiometer on HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 217-220. DOI: 10.1088/1009-0630/15/3/05
    [9]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
    [10]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
  • Cited by

    Periodical cited type(3)

    1. Jdaini, O., Missaoui, A., El Bojaddaini, M. et al. Comparative Analysis of Plasma Sheath Characteristics in One-Dimensional and Three-Dimensional Velocity Spaces Governing Nonextensive Electron Density. Contributions to Plasma Physics, 2025. DOI:10.1002/ctpp.202400094
    2. Eljabiri, Z., El Ghani, O., Driouch, I. et al. Total secondary emission effect on the complex plasma sheath with superextensive electrons. Journal of Plasma Physics, 2024, 90(5): 905900506. DOI:10.1017/S0022377824001193
    3. El Bojaddaini, M., El Kaouini, M., Chatei, H. Sheath structure behavior in collisional non-extensive plasma with negative ions. European Physical Journal Plus, 2024, 139(5): 373. DOI:10.1140/epjp/s13360-024-05112-3
    1. Jdaini, O., Missaoui, A., El Bojaddaini, M. et al. Comparative Analysis of Plasma Sheath Characteristics in One-Dimensional and Three-Dimensional Velocity Spaces Governing Nonextensive Electron Density. Contributions to Plasma Physics, 2025. DOI:10.1002/ctpp.202400094
    2. Eljabiri, Z., El Ghani, O., Driouch, I. et al. Total secondary emission effect on the complex plasma sheath with superextensive electrons. Journal of Plasma Physics, 2024, 90(5): 905900506. DOI:10.1017/S0022377824001193
    3. El Bojaddaini, M., El Kaouini, M., Chatei, H. Sheath structure behavior in collisional non-extensive plasma with negative ions. European Physical Journal Plus, 2024, 139(5): 373. DOI:10.1140/epjp/s13360-024-05112-3

    Other cited types(0)

Catalog

    Article views (112) PDF downloads (59) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return