Advanced Search+
Ziauddin KHAN, Firozkhan PATHAN, Yuvakiran PARAVASTU, Siju GEORGE, Gattu RAMESH, Hima BINDU, Dilip C. RAVAL, Prashant THANKEY, Kalpesh DHANANI, Subrata PRADHAN. Nitrogen Gas Heating and Supply System for SST-1 Tokamak[J]. Plasma Science and Technology, 2013, 15(2): 157-160. DOI: 10.1088/1009-0630/15/2/16
Citation: Ziauddin KHAN, Firozkhan PATHAN, Yuvakiran PARAVASTU, Siju GEORGE, Gattu RAMESH, Hima BINDU, Dilip C. RAVAL, Prashant THANKEY, Kalpesh DHANANI, Subrata PRADHAN. Nitrogen Gas Heating and Supply System for SST-1 Tokamak[J]. Plasma Science and Technology, 2013, 15(2): 157-160. DOI: 10.1088/1009-0630/15/2/16

Nitrogen Gas Heating and Supply System for SST-1 Tokamak

More Information
  • Received Date: January 18, 2012
  • Steady State Tokamak (SST-1) vacuum vessel baking as well as baking of the first wall components of SST-1 are essential to plasma physics experiments. Under a refurbishment spectrum of SST-1, the nitrogen gas heating and supply system has been fully refurbished. The SST-1 vacuum vessel consists of ultra-high vacuum (UHV) compatible eight modules and eight sectors. Rectangular baking channels are embedded on each of them. Similarly, the SST-1 plasma facing components (PFC) are comprised of modular graphite diverters and movable graphite based limiters. The nitrogen gas heating and supply system would bake the plasma facing components at 350 oC and the SST-1 vacuum vessel at 150 oC over an extended duration so as to remove water vapour and other absorbed gases. An efficient PLC based baking facility has been developed and implemented for monitoring and control purposes. This paper presents functional and operational aspects of a SST-1 nitrogen gas heating and supply system. Some of the experimental results obtained during the baking of SST-1 vacuum modules and sectors are also presented here.
  • Related Articles

    [1]Shuhui YANG (杨姝惠), Tong ZHAO (赵彤), Jingxian CUI (崔静娴), Zhiyun HAN (韩智云), Liang ZOU (邹亮), Xiaolong WANG (王晓龙), Yuantao ZHANG (张远涛). Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine[J]. Plasma Science and Technology, 2020, 22(12): 125401. DOI: 10.1088/2058-6272/abb454
    [2]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [3]ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20
    [4]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [5]NIU Guojian (牛国鉴), LI Xiaochun (李小椿), XU Qian (徐倩), YANG Zhongshi (杨钟时), LUO Guangnan (罗广南). Molecular Dynamics Simulations of the Interactions Between Tungsten Dust and Beryllium Plasma-Facing Material[J]. Plasma Science and Technology, 2015, 17(12): 1072-1077. DOI: 10.1088/1009-0630/17/12/16
    [6]NIU Guojian(牛国鉴), LI Xiaochun(李小椿), DING Rui(丁锐), XU Qian(徐倩), LUO Guangnan(罗广南). Molecular Dynamics Simulations of Deposition and Damage on Tungsten Plasma-Facing Materials by Tungsten Dust[J]. Plasma Science and Technology, 2014, 16(8): 805-808. DOI: 10.1088/1009-0630/16/8/13
    [7]XIA Donghui (夏冬辉), HUANG Mei (黄梅), ZHOU Jun (周俊), et al.. The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A[J]. Plasma Science and Technology, 2014, 16(4): 410-414. DOI: 10.1088/1009-0630/16/4/20
    [8]YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19
    [9]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [10]ZHAO Chengli (赵成利), DENG Chaoyong (邓朝勇), SUN Weizhong(孙伟中), ZHANG Junyuan (张浚源), CHEN Feng (陈峰), HE Pingni (贺平逆), CHEN Xu (陈旭), GOU Fujun (芶富均). Etching Mechanisms of CF3 Etching Fluorinated Si: Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(7): 670-674. DOI: 10.1088/1009-0630/14/7/23

Catalog

    Article views (254) PDF downloads (1378) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return