Advanced Search+
Shuhui YANG (杨姝惠), Tong ZHAO (赵彤), Jingxian CUI (崔静娴), Zhiyun HAN (韩智云), Liang ZOU (邹亮), Xiaolong WANG (王晓龙), Yuantao ZHANG (张远涛). Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine[J]. Plasma Science and Technology, 2020, 22(12): 125401. DOI: 10.1088/2058-6272/abb454
Citation: Shuhui YANG (杨姝惠), Tong ZHAO (赵彤), Jingxian CUI (崔静娴), Zhiyun HAN (韩智云), Liang ZOU (邹亮), Xiaolong WANG (王晓龙), Yuantao ZHANG (张远涛). Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine[J]. Plasma Science and Technology, 2020, 22(12): 125401. DOI: 10.1088/2058-6272/abb454

Molecular dynamics simulations of the interaction between OH radicals in plasma with poly-β-1–6-N-acetylglucosamine

More Information
  • Received Date: June 18, 2020
  • Revised Date: August 21, 2020
  • Accepted Date: August 31, 2020
  • Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine (PNAG), which is one of the important components in some biofilms, was used as the research subject, and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.
  • [1]
    Akhavan B et al 2018 Appl. Mater. Today 12 72
    [2]
    Su X et al 2018 Appl. Environ. Microbiol. 84 e02836-17
    [3]
    Liao X Y et al 2019 Crit. Rev. Food Sci. Nutr. 59 2562
    [4]
    Lee M H et al 2009 New J. Phys. 11 115022
    [5]
    Fridman G et al 2008 Plasma Processes Polym. 5 503
    [6]
    Keidar M et al 2011 Br. J. Cancer 105 1295
    [7]
    Graves D B 2012 J. Phys. D Appl. Phys. 45 263001
    [8]
    Stewart P S and Costerton J W 2001 Lancet 358 135
    [9]
    Mah T F et al 2003 Nature 426 306
    [10]
    Otto M 2008 Curr. Top. Microbiol. Immunol. 322 207
    [11]
    Moormeier D E and Bayles K W 2017 Mol. Microbiol.104 365
    [12]
    Singh S et al 2017 Open Microbiol. J. 11 53
    [13]
    Los A et al 2020 Appl. Environ. Microbiol. 86 e02619–02619
    [14]
    Patange A et al 2019 Int. J. Food Microbiol. 293 137
    [15]
    Matthes R et al 2013 Plasma Processes Polym. 10 161
    [16]
    Alkawareek M Y et al 2012 PLoS One 7 e44289
    [17]
    Govaert M et al 2019 Innovat. Food Sci. Emerg. Technol.52 376
    [18]
    Li Y L et al 2019 Plasma Chem. Plasma Process. 39 35
    [19]
    Modic M et al 2017 Int. J. Antimicrob. Agents 49 375
    [20]
    Handorf O et al 2018 Appl. Environ. Microbiol. 84 e01163-18
    [21]
    Gabriel A A et al 2016 Innovat. Food Sci. Emerg. Technol.36 311
    [22]
    Machala Z, Chládeková L and Pelach M 2010 J. Phys. D Appl.Phys. 43 222001
    [23]
    Zhang Q et al 2012 J. Appl. Phys. 111 123305
    [24]
    Liao X et al 2018 J. Food Sci. 83 401
    [25]
    Chandana L et al 2018 Sci. Total Environ. 640–641 493
    [26]
    Khan M S I, Lee E J and Kim Y J 2016 Sci. Rep. 6 37072
    [27]
    Abolfath R M, Van Duin A C T and Brabec T 2011 J. Phys.Chem. A 115 11045
    [28]
    Cui J X et al 2018 J. Phys. D Appl. Phys. 51 355401
    [29]
    Zhao T et al 2017 Phys. Plasma 24 103518
    [30]
    Van Duin A C T et al 2001 J. Phys. Chem. A 105 9396
    [31]
    Yusupov M et al 2012 New J. Phys. 14 093043
    [32]
    Yusupov M et al 2013 J. Phys. Chem. C 117 5993
    [33]
    Yusupov M et al 2015 Plasma Processes Polym. 12 162
    [34]
    Neyts E C et al 2014 J. Phys. D Appl. Phys. 47 293001
    [35]
    Bogaerts A et al 2014 Plasma Processes Polym. 11 1156
    [36]
    Liu D X et al 2010 Plasma Sources Sci. Technol. 19 025018
    [37]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
    [38]
    Kikuchi Y et al 2011 Jpn. J. Appl. Phys. 50 01AH03
    [39]
    Yusupov M et al 2014 J. Phys. D Appl. Phys. 47 025205
    [40]
    Hefny M M et al 2016 J. Phys. D Appl. Phys. 49 404002
    [41]
    Tian W and Kushner M J 2014 J. Phys. D Appl. Phys. 47 165201
    [42]
    Chenoweth K, Van Duin A C T and Goddard W A 2008 J. Phys. Chem. A 112 1040
    [43]
    Weismiller M R et al 2010 J. Phys. Chem. A 114 5485
    [44]
    Senftle T P et al 2016 npj Comput. Mater. 2 15011
    [45]
    Monti S et al 2013 Phys. Chem. Chem. Phys. 15 15062
    [46]
    Neyts E C, Van Duin A C T and Bogaerts A 2012 J. Am.Chem. Soc. 134 1256
    [47]
    Rahaman O et al 2011 J. Phys. Chem. B 115 249
    [48]
    Little D J et al 2018 PLoS Pathog. 14 e1006998
    [49]
    Flemming H C and Wingender J 2010 Nat. Rev. Microbiol.8 623
    [50]
    Bales P M et al 2013 PLoS One 8 e67950
    [51]
    Gening M L et al 2010 Eur. J. Org. Chem. 2010 2415
    [52]
    Izano E A et al 2007 Microb Pathog 43 1
    [53]
    Fang Z et al 2016 Eur. Phys. J. D 70 79
    [54]
    Zhang X H et al 2018 Plasma Processes Polym. 15 1700241
    [55]
    Srivastava N and Wang C J 2011 J. Appl. Phys. 110 053304
  • Related Articles

    [1]Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3
    [2]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [3]Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8
    [4]Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592
    [5]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [6]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [7]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [8]DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04
    [9]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [10]SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14
  • Cited by

    Periodical cited type(13)

    1. Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013
    2. Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203
    3. Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450
    4. Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6
    5. Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148
    6. Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082
    7. Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935
    8. Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459
    9. Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612
    10. Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
    11. Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607
    12. Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818
    13. Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w

    Other cited types(0)

Catalog

    Article views (208) PDF downloads (296) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return