Advanced Search+
Jinghua YANG (杨景华), Shaoxia JIA (贾少霞), Zhenhua ZHANG (张振华), Xinghua ZHANG (张兴华), Ting JIN (金婷), Long LI (李龙), Yong CAI (蔡勇), Jian CAI (蔡建). Performance of a 4 cm iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2020, 22(9): 94006-094006. DOI: 10.1088/2058-6272/ab891d
Citation: Jinghua YANG (杨景华), Shaoxia JIA (贾少霞), Zhenhua ZHANG (张振华), Xinghua ZHANG (张兴华), Ting JIN (金婷), Long LI (李龙), Yong CAI (蔡勇), Jian CAI (蔡建). Performance of a 4 cm iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2020, 22(9): 94006-094006. DOI: 10.1088/2058-6272/ab891d

Performance of a 4 cm iodine-fueled radio frequency ion thruster

Funds: The financial support from National Natural Science Foundation of China (No. 11805265) and Key Laboratory of Micro-Satellites, Chinese Academy of Sciences (No. KFKT201903) is gratefully acknowledged.
More Information
  • Received Date: January 01, 2020
  • Revised Date: April 02, 2020
  • Accepted Date: April 13, 2020
  • The performance of an iodine radio ion thruster with a 4 cm diameter (IRIT4) was studied experimentally in this paper. Regulation of the mass flow rates of the iodine propellant is achieved by using a temperature control method of the iodine reservoir. Performance of the thruster using iodine as propellants is obtained at different total thruster powers of 40.6–128.8 W, different grid voltages of 1000–1800 V and the iodine flow rate of 100 μg s−1. Results show that thrust and specific impulse increase approximately linearly with the increasing total thruster power and the screen grid voltage. The thrust of 2.32 mN and the specific impulse of 2361 s are obtained at the nominal total thruster power of 95.8 W and the screen grid voltage of 1800 V. It is also indicated that performance of the iodine propellant is comparable to that of the xenon propellant; and a difference between them is that the iodine thrust is slightly higher than xenon when the total thruster power is more than 62 W. At the nominal 95.8 W total thruster power, the thrust values of them are 2.32 mN and 2.15 mN respectively, and the thrust-to-power ratios of them are 24.2 mN kW−1 and 23.5 mN kW−1, respectively.
  • [1]
    Dressler R A, Chiu Y H and Levandier D J 2000 Propellant alternatives for ion and hall effect thrusters Proc. 38th Aerospace Sciences Meeting and Exhibit (Reno, NV (AIAA) 2000)
    [2]
    Tverdokhlebov O S and Semenkin A V 2001 Iodine propellant for electric propulsion—to be or not to be Proc. 37th Joint Propulsion Conf. and Exhibit (Salt Lake City, UT (AIAA) 2001)
    [3]
    Tsay M, Frongillo J and Hohman K 2015 Iodine-fueled Mini RF ion thruster for CubeSat applications Proc. 34th Int. Electric Propulsion Conf. (Hyogo-Kobe, Japan (IEPC) 2015)
    [4]
    Szabo J et al 2012 J. Propul. Power. 28 848
    [5]
    Szabo J et al 2013 Iodine propellant space propulsion Proc.33rd Int. Electric Propulsion Conf. (Washington, DC (IEPC) 2013)
    [6]
    Dankanich J W et al 2014 The iodine satellite (iSAT) hall thruster demonstration mission concept and development Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, OH (AIAA) 2014)
    [7]
    Szabo J et al 2015 IEEE Trans. Plasma Sci. 43 141
    [8]
    Smith T D et al 2016 Overview of NASA iodine hall thruster propulsion system development Proc. Space Propulsion (Rome, Italy (Association Aeronautique et Astronautique) 2016)
    [9]
    Yan N W, Guo N and Gu Z J 2018 Vacuum Cryogen. 24 332 (in Chinese)
    [10]
    Liu H et al 2019 J Propulsion Technol. 40 12 (in Chinese)
    [11]
    Holste K et al 2018 Eur. Phys. J. D 72 9
    [12]
    Grondein P et al 2016 Phys. Plasmas 23 033514
    [13]
    Tsay M and Martinez-Sanchez M 2007 Simple performance modeling of a radio-frequency ion thruster Proc. 30th Int. Electric Propulsion Conf. (Florence, Italy (IEPC) 2007) (http://electricrocket.org/IEPC/IEPC-2007-072.pdf)
    [14]
    Feili D et al 2009 μNRIT-2.5-a new optimized microthruster of Giessen university Proc. 31th Int. Electric Propulsion Conf.(Michigan, USA (IEPC) 2015) (http://electricrocket.org/IEPC/IEPC-2009-174.pdf)
  • Related Articles

    [1]Longfei Ma, jinhao liu, Jiahao Fu, Jianwu He, Li Duan, Qi Kang. Performance of radio frequency ion thruster with polytetrafluoroethylene propellant embedded in discharge chamber[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adae44
    [2]Zongqi XU, Pingyang WANG, Dongsheng CAI, Rui TAN, Wenjing JIANG. Performance investigation of a low-power Hall thruster fed on iodine propellant[J]. Plasma Science and Technology, 2024, 26(6): 065501. DOI: 10.1088/2058-6272/ad240e
    [3]Zhiwei HUA, Pingyang WANG, Zhongxi NING, Zhanwen YE, Zongqi XU. Early experimental investigation of the C12A7 hollow cathode fed on iodine[J]. Plasma Science and Technology, 2022, 24(7): 074004. DOI: 10.1088/2058-6272/ac4fb4
    [4]Xinghua ZHANG, Zhenhua ZHANG, Shaoxia JIA, Ting JIN, Jinghua YANG, Long LI, Fangfang LIU, Yong CAI, Jian CAI. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2022, 24(1): 015506. DOI: 10.1088/2058-6272/ac34e6
    [5]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [6]Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9
    [7]LIANG Tian (梁田), ZHENG Zhiyuan (郑志远), ZHANG Siqi (张思齐), TANG Weichong (汤伟冲), XIAO Ke (肖珂), LIANG Wenfei (梁文飞), GAO Lu (高禄), GAO Hua (高华). Influence of Surface Radius Curvature on Laser Plasma Propulsion with Ablation Water Propellant[J]. Plasma Science and Technology, 2016, 18(10): 1034-1037. DOI: 10.1088/1009-0630/18/10/11
    [8]ZHENG Zhiyuan(郑志远), GAO Hua(高华), FAN Zhenjun(樊振军), XING Jie(邢杰). Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(3): 251-254. DOI: 10.1088/1009-0630/16/3/14
    [9]ZHANG Saiqian(张赛谦), DAI Zhongling(戴忠玲), WANG Younian(王友年). Ion Transport to a Photoresist Trench in a Radio Frequency Sheath[J]. Plasma Science and Technology, 2012, 14(11): 958-964. DOI: 10.1088/1009-0630/14/11/03
    [10]DAI Zhongling(戴忠玲), YUE Guang(岳光), WANG Younian(王友年). Simulations of Ion Behaviors in a Photoresist Trench During Plasma Etching Driven by a Radio-Frequency Source[J]. Plasma Science and Technology, 2012, 14(3): 240-244. DOI: 10.1088/1009-0630/14/3/10
  • Cited by

    Periodical cited type(18)

    1. Cui, Y., Ren, J., Wu, K. et al. Modelling the effect of deposited grid material on the power coupling of radio frequency ion thrusters. Journal of Electric Propulsion, 2025, 4(1): 2. DOI:10.1007/s44205-025-00101-9
    2. Levchenko, I., Goebel, D., Pedrini, D. et al. Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 2025. DOI:10.1016/j.paerosci.2023.100900
    3. Saifutdinova, A.A., Makushev, A.A., Gatiyatullin, F.R. et al. Simulation of the Plasma Parameters Dynamics in Iodine in an Electric Rocket Engine based on ICP Discharge. High Energy Chemistry, 2024, 58(Suppl 2): S215-S224. DOI:10.1134/S0018143924700899
    4. Saifutdinova, A.A., Makushev, A.A., Sysoev, S.S. et al. Parametric Analysis of Plasma-Chemical Processes in Electrodeless RF and Microwave Discharges in Iodine Vapor. High Energy Chemistry, 2024, 58(5): 575-582. DOI:10.1134/S0018143924700486
    5. Xu, Z., Wang, P., Cai, D. et al. Performance investigation of a low-power Hall thruster fed on iodine propellant. Plasma Science and Technology, 2024, 26(6): 065501. DOI:10.1088/2058-6272/ad240e
    6. Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036
    7. Shu, M., Wang, G., Xu, Z. et al. Simulation Study on Discharge Characteristics of Radio Frequency Ion Thruster with Iodine Working Medium | [碘工质射频离子推力器放电特性仿真研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(2): 125-131. DOI:10.13922/j.cnki.cjvst.202307002
    8. Li, X., Zeng, M., Liu, H. et al. Iodine electron cyclotron resonance plasma source for electric propulsion | [应用于电推进的碘工质电子回旋共振等离子体源]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(22): 225202. DOI:10.7498/aps.72.20230785
    9. Lafleur, T., Habl, L., Rossi, E.Z. et al. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, 31(11): 114001. DOI:10.1088/1361-6595/ac9ad7
    10. Ye, Z.-W., Wang, P.-Y., Hua, Z.-W. et al. Feeding Design and Experimental Study of Iodine Electric Propulsion System | [碘工质电推进系统的储供设计及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(9): 21012. DOI:10.13675/j.cnki.tjjs.210125
    11. Esteves, B., Marmuse, F., Drag, C. et al. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, 31(8): 085007. DOI:10.1088/1361-6595/ac8288
    12. Hua, Z., Wang, P., Ning, Z. et al. Early experimental investigation of the C12A7 hollow cathode fed on iodine. Plasma Science and Technology, 2022, 24(7): 074004. DOI:10.1088/2058-6272/ac4fb4
    13. Xu, Z., Tian, L., Ye, Z. et al. Design and Experimental Research on Principle Prototype of Iodine Hall Thruster | [碘工质霍尔推力器原理样机设计与实验研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2022, 42(6): 456-461. DOI:10.13922/j.cnki.cjvst.202112003
    14. Vavilov, I.S., Fedyanin, V.V., Yachmenev, P.S. et al. Determination of the parameters of the microwave ion thruster by the calorimetric method. Journal of Physics: Conference Series, 2022, 2182(1): 012067. DOI:10.1088/1742-6596/2182/1/012067
    15. Ashby, J., Rosset, S., Henke, E.F.M. et al. One Soft Step: Bio-Inspired Artificial Muscle Mechanisms for Space Applications. Frontiers in Robotics and AI, 2022. DOI:10.3389/frobt.2021.792831
    16. ZHANG, X., ZHANG, Z., JIA, S. et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2022, 24(1): 015506. DOI:10.1088/2058-6272/ac34e6
    17. Levko, D., Raja, L.L. Fluid modeling of inductively coupled iodine plasma for electric propulsion conditions. Journal of Applied Physics, 2021, 130(17): 173302. DOI:10.1063/5.0063578
    18. O’reilly, D., Herdrich, G., Kavanagh, D.F. Electric propulsion methods for small satellites: A review. Aerospace, 2021, 8(1): 1-30. DOI:10.3390/aerospace8010022

    Other cited types(0)

Catalog

    Article views (158) PDF downloads (138) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return