Advanced Search+
Shengran MA (马圣然), Wen YAN (晏雯), Zhenhua BI (毕振华), Hongzhi WANG (王宏志), Ying SONG (宋颖), Dezhen WANG (王德真). Influence of water vapor concentration on discharge dynamics and reaction products of underwater discharge within a He/H2O-filled bubble at atmospheric pressure[J]. Plasma Science and Technology, 2020, 22(8): 85406-085406. DOI: 10.1088/2058-6272/ab9170
Citation: Shengran MA (马圣然), Wen YAN (晏雯), Zhenhua BI (毕振华), Hongzhi WANG (王宏志), Ying SONG (宋颖), Dezhen WANG (王德真). Influence of water vapor concentration on discharge dynamics and reaction products of underwater discharge within a He/H2O-filled bubble at atmospheric pressure[J]. Plasma Science and Technology, 2020, 22(8): 85406-085406. DOI: 10.1088/2058-6272/ab9170

Influence of water vapor concentration on discharge dynamics and reaction products of underwater discharge within a He/H2O-filled bubble at atmospheric pressure

Funds: This work was supported by National Natural Science Foundation of China (No. 11705022), Innovation and Entrepreneurship Plan of Dalian Nationalities University (No. 201912026182).
More Information
  • Received Date: December 23, 2019
  • Revised Date: May 04, 2020
  • Accepted Date: May 06, 2020
  • In this study, a two-dimensional fluid model is proposed to simulate the underwater discharge in a He/H2O-filled bubble at atmospheric pressure. The molar fraction of water vapor is varied in the range of 0.01%–1% to investigate the dependence of discharge dynamics and reaction products on water vapor concentration (WVC). The numerical results show that most properties of the discharge sensitively depend on the WVC. The increase of WVC leads to an increase in the electron density and discharge propagation velocity, which is attributed to Penning ionization between He* and H2O. The main positive ion switches from He+ to H2O+, while the WVC increases from 0.01% to 1%. The dominant reactive oxygen species is OH, whose peak density is about two orders of magnitude higher than that of O. Besides, the densities of OH and O radicals increase with the increasing WVC. It is shown that the formation mechanism of O radicals is significantly affected by the WVC. The dominant reaction creating O radicals changes from the charge exchange between He2+ and H2O to the electron impact dissociation of H2O as the WVC increases from 0.01% to 1%. This study is helpful for better understanding the application of non-thermal plasmas discharges in water, such as biomedical, environmental engineering.
  • [1]
    Foster J E 2017 Phys. Plasmas 24 055501
    [2]
    Tampieri F et al 2018 Plasma Process. Polym. 15 1700207
    [3]
    Foster J E et al 2018 J. Phys. D: Appl. Phys. 51 293001
    [4]
    Vanraes P et al 2018 Appl. Phys. Rev. 5 031103
    [5]
    Stratton G R et al 2017 Environ. Sci. Technol. 51 1643
    [6]
    Zhang X H et al 2018 Plasma Process. Polym. 15 1700241
    [7]
    Machala Z et al 2019 J. Phys. D: Appl. Phys. 52 034002
    [8]
    Wang H H et al 2018 J. Phys. D: Appl. Phys. 51 094002
    [9]
    Hamdan A, Čerņevičs K and Cha M S 2017 J. Phys. D: Appl.Phys. 50 185207
    [10]
    Sharma A et al 2016 J. Phys. D: Appl. Phys. 49 395205
    [11]
    Tian W and Kushner M J 2014 J. Phys. D: Appl. Phys. 47 165201
    [12]
    Takeuchi N, Ishii I and Yasuoka K 2012 Plasma Sources Sci.Technol. 21 015006
    [13]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [14]
    Yan W et al 2019 Phys. Plasmas 26 023504
    [15]
    Babaeva N Y et al 2016 J. Phys. D: Appl. Phys. 49 025202
    [16]
    Takeuchi N and Ishibashi N 2018 Plasma Sources Sci.Technol. 27 045010
    [17]
    Liu X Y et al 2014 Phys. Plasmas 21 093513
    [18]
    Qian M Y et al 2016 Chin. Phys. B 25 015202
    [19]
    Tian W, Tachibana K and Kushner M J 2014 J. Phys. D: Appl.Phys. 47 055202
    [20]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [21]
    Anon SIGLO database www.lxcat.net (Accessed: 7 June 2017)
    [22]
    Itikawa database www.lxcat.net (Accessed: 7 April 2017)
    [23]
    Hasan M I and Bradley J W 2015 Plasma Sources Sci.Technol. 24 055015
    [24]
    Comsol version 5.2a http://cn.comsol.com/
    [25]
    Zhang J, Wang Y H and Wang D Z 2018 Phys. Plasmas 25 072101
    [26]
    Boeuf J P, Yang L L and Pitchford L C 2013 J. Phys. D: Appl.Phys. 46 015201
    [27]
    Breden D, Miki K and Raja L L 2012 Plasma Sources Sci.Technol. 21 034011
    [28]
    Breden D, Miki M and Raja L L 2011 Appl. Phys. Lett. 99 111501
    [29]
    Naidis G V 2013 Plasma Sources Sci. Technol. 22 035015
  • Related Articles

    [1]Zhongzheng LI (李中正), Juanfang HAN (韩娟芳), FangpingWANG (王芳平), Zhengwu CHEN (陈正武), Wenshan DUAN (段文山). Investigation of the fast magnetosonic wave excited by the Alfvén wave phase mixing by using the Hall–MHD model in inhomogeneous plasma[J]. Plasma Science and Technology, 2021, 23(3): 35003-035003. DOI: 10.1088/2058-6272/abe10b
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]Liqiu WEI (魏立秋), Wenbo LI (李文博), Yongjie DING (丁永杰), Daren YU (于达仁). Effect of low-frequency oscillation on performance of Hall thrusters[J]. Plasma Science and Technology, 2018, 20(7): 75502-075502. DOI: 10.1088/2058-6272/aabae0
    [5]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [6]CHANG Lei (苌磊), LI Qingchong (李庆冲), ZHANG Huijie (张辉洁), LI Yinghong (李应红), WU Yun (吴云), ZHANG Bailing (张百灵), ZHUANG Zhong (庄重). Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma[J]. Plasma Science and Technology, 2016, 18(8): 848-854. DOI: 10.1088/1009-0630/18/8/10
    [7]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [8]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [9]K. Ogawa, M. Isobe, K. Toi, F. Watanabe, D. A. Spong, A. Shimizu, M. Osakabe, D. S. Darrow, S. Ohdachi, S. Sakakibara, LHD Experiment Group. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfvén Eigenmodes in the Large Helical Device[J]. Plasma Science and Technology, 2012, 14(4): 269-272. DOI: 10.1088/1009-0630/14/4/01
    [10]LIU Xun (刘勋), LI Yutong (李玉同), ZHONG Jiayong (仲佳勇), DONG Quanli (董全力), WANG Shoujun (王首钧), ZHANG Lei (张蕾), ZHU Jianqiang (朱健强), ZHAO Gang (赵刚), ZHANG Jie (张杰). Characteristics of Plasma Jets in Laser-Driven Magnetic Reconnection[J]. Plasma Science and Technology, 2012, 14(2): 97-101. DOI: 10.1088/1009-0630/14/2/03

Catalog

    Article views (114) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return