Advanced Search+
Peng WU (吴鹏), Yibai WANG (王一白), Yong LI (李永), Baojun WANG (王宝军), Kaiyu ZHANG (张凯宇), Haibin TANG (汤海滨), Jinbin CAO (曹晋滨). Cathode erosion site distributions in an applied-field magnetoplasmadynamic thruster[J]. Plasma Science and Technology, 2020, 22(9): 94008-094008. DOI: 10.1088/2058-6272/ab9172
Citation: Peng WU (吴鹏), Yibai WANG (王一白), Yong LI (李永), Baojun WANG (王宝军), Kaiyu ZHANG (张凯宇), Haibin TANG (汤海滨), Jinbin CAO (曹晋滨). Cathode erosion site distributions in an applied-field magnetoplasmadynamic thruster[J]. Plasma Science and Technology, 2020, 22(9): 94008-094008. DOI: 10.1088/2058-6272/ab9172

Cathode erosion site distributions in an applied-field magnetoplasmadynamic thruster

Funds: This work was supported by the Fundamental Research Program (No. 11872093).
More Information
  • Received Date: December 24, 2019
  • Revised Date: May 05, 2020
  • Accepted Date: May 06, 2020
  • Erosion can influence cathode life, and is thus considered to be one of the main factors limiting the application of applied-field magnetoplasmadynamic thrusters. In this paper, erosion sites on graphite cathodes are studied so as to identify the influence of applied magnetic field and the ratio of propellant mass flow rate supplied from cathode and anode. The experiment results show that the application of applied magnetic field can significantly reduce the erosion rate of the cathode compared to that without magnetic field. The erosion sites on the cathode vary with the relative position of the convergent-divergent magnetic field, and are mainly distributed in the divergent part of the field. The erosion sites on the cathodes are found to be related to the propellant supply. The decreasing anode mass flow rate enlarges the range of erosion. These results are much helpful for the analysis of cathode erosion site location since they provide evidences of erosion mechanisms and point out the directions for further research.
  • [1]
    Wang L J et al 2019 IEEE Trans. Plasma Sci. 47 3496
    [2]
    Zhang Z et al 2019 Rev. Mod. Plasma Phys. 3 5
    [3]
    Zhang Z et al 2019 Plasma Sources Sci. Technol. 28 025008
    [4]
    Sheshadri T S 1991 Vacuum 42 923
    [5]
    Herdrich G et al 2013 Vacuum 88 36
    [6]
    Kodys A and Choueiri E Y 2005 A critical review of the state-of-the-art in the performance of applied-field magnetoplasmadynamic thrusters Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Tucson, Arizona) (Reston, VA: AIAA) (https://doi.org/10.2514/6.2005-4247)
    [7]
    Myers R M, Mantenieks M A and LaPointe M R 1991 MPD thruster technology Proc. Conf. on Advanced SEI Technologies (Cleveland) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1991-3568)
    [8]
    Sovey J S and Mantenieks M A 1991 J. Propul. Power 7 71
    [9]
    Polk J E 1993 Operation of thoriated tungsten cathodes AIP Conf. Proc. 271 1435
    [10]
    Tang H B et al 2011 J. Propul. Power 27 218
    [11]
    Schrade H O, Auweter-Kurtz M and Kurtz H L 1987 AIAA J.25 1105
    [12]
    Subramaniam V V, Hoyer K S and Lawless J L 1971 J. Propul.Power 7 565
    [13]
    Goodfellow K D, Pivirotto T J and Polk J E 1992 Applied-field magnetoplasmadynamic engine developments Proc. 28th Joint Propulsion Conf. and Exhibit (Nashville: AIAA)(https://doi.org/10.2514/6.1992-3293)
    [14]
    Myers R M et al 1991 J. Propul. Power 7 760
    [15]
    Polk J E et al 1990 Mechanisms of hot cathode erosion in plasma thrusters Proc. 21st Int. Electric Propulsion Conf.(Orlando, FL) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1990-2673)
    [16]
    Schrade H O, Auweter-Kurtz M and Kurtz H L 1987 Cathode phenomena in plasma thrusters Proc. 19th Int. Electric Propulsion Conf. (Colorado Springs) (Reston, VA: AIAA)(https://doi.org/10.2514/6.1987-1096)
    [17]
    Ferreira C M and Delcroix J L 1978 J. Appl. Phys. 49 2380
    [18]
    Babkin G V et al 1976 J. Appl. Mech. Tech. Phys. 17 767
    [19]
    Goodfellow K D 1996 High-current low-pressure cathode operation Proc. 32nd Joint Propulsion Conf. and Exhibit (Lake Buena Vista) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1996-3205)
    [20]
    Mikellides I et al 2004 Theoretical model of a hollow cathode insert plasma Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Florida) (Reston, VA: AIAA) (https://doi.org/10.2514/6.2004-3817)
    [21]
    Zhang X et al 2017 J. Phys. D: Appl. Phys. 50 455203
    [22]
    Wang L J et al 2018 Phys. Plasmas 25 043511
    [23]
    Auweter-Kurtz M et al 1993 J. Propul. Power 9 882
    [24]
    Mantenieks M A and Myers R M 1993 100 kW class applied‐field thruster component wear AIP Conf. Proc. (https://doi.org/10.1063/1.43093)
    [25]
    Toki K and Kimura I 1979 Studies of current distribution on the hollow cathode of an MPD arcjet Proc. 14th Int. Electric Propulsion Conf. (Princeton) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1979-2113)
    [26]
    Kimura I, Toki K and Tanaka M 1982 AIAA J. 20 889
    [27]
    Tanaka M and Kimura I 1988 J. Propul. Power 4 428
    [28]
    Polk J E et al 1987 J. Propul. Power 3 33
    [29]
    Polk J E, Kelly A J and Jahn R G 1987 MPD thruster erosion research Proc. 19th Int. Electric Propulsion Conf. (Colorado Springs) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1987-999)
    [30]
    Wang B et al 2018 Meas. Sci. Technol. 29 075302
    [31]
    Li Z F et al 2018 J. Phys. D: Appl. Phys. 51 085201
    [32]
    Kitaeva A et al 2019 Vacuum 159 324
    [33]
    Wang B J et al 2018 J. Vis. Exp. 142 e58510
    [34]
    Ekdahl C, Kribel R and Lovberg R 1967 Internal measurements of plasma rotation in an MPD arc Proc. 6th Electric Propulsion and Plasmadynamics Conf. (Colorado Springs) (AIAA) (https://doi.org/10.2514/6.1967-655)
    [35]
    Larson A V 1968 AIAA J. 6 1001
    [36]
    Wang L J et al 2019 Appl. Phys. Lett. 115 014101
    [37]
    Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion 2nd edn (Berlin: Springer) p 1
    [38]
    Mikellides P G, Turchi P J and Roderick N F 2000 J. Propul.Power 16 887
    [39]
    Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Process. 14 451
  • Related Articles

    [1]Chao Zhong, Hong Li, Shuo Hu, Daren Yu. Study on the relation between magnetic field gradient and operating range of flow rate for Hall thrusters[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adadb9
    [2]Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
    [3]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [4]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [5]Yafeng BAI (白亚锋), Shiyi ZHOU (周诗怡), Yushan ZENG (曾雨珊), Yihan LIANG (梁亦寒), Rong QI (齐荣), Wentao LI (李文涛), Ye TIAN(田野), Xiaoya LI (李晓亚), Jiansheng LIU (刘建胜). Optical measurements and analytical modeling of magnetic field generated in a dieletric target[J]. Plasma Science and Technology, 2018, 20(1): 14010-014010. DOI: 10.1088/2058-6272/aa8c6f
    [6]Hao ZHANG (张浩), Fengsen ZHU (朱凤森), Xiaodong LI (李晓东), Changming DU (杜长明). Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current[J]. Plasma Science and Technology, 2017, 19(4): 45401-045401. DOI: 10.1088/2058-6272/aa57f3
    [7]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [8]WANG Cheng (王城), CHEN Tang (陈瑭), LI Wanwan (李皖皖), ZHA Jun (査俊), XIA Weidong (夏维东). Axial Magnetic Field Effects on Xenon Short-Arc Lamps[J]. Plasma Science and Technology, 2014, 16(12): 1096-1099. DOI: 10.1088/1009-0630/16/12/03
    [9]ZHAO Guoming(赵国明), SUN Qian(孙倩), ZHAO Shuxia(赵书霞), GAO Shuxia(高书侠), ZHANG Lianzhu(张连珠). The Effect of Gas Flow Rate on Radio-Frequency Hollow Cathode Discharge Characteristics[J]. Plasma Science and Technology, 2014, 16(7): 669-676. DOI: 10.1088/1009-0630/16/7/07
    [10]LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18

Catalog

    Article views (142) PDF downloads (208) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return