Advanced Search+
Peng WU (吴鹏), Yibai WANG (王一白), Yong LI (李永), Baojun WANG (王宝军), Kaiyu ZHANG (张凯宇), Haibin TANG (汤海滨), Jinbin CAO (曹晋滨). Cathode erosion site distributions in an applied-field magnetoplasmadynamic thruster[J]. Plasma Science and Technology, 2020, 22(9): 94008-094008. DOI: 10.1088/2058-6272/ab9172
Citation: Peng WU (吴鹏), Yibai WANG (王一白), Yong LI (李永), Baojun WANG (王宝军), Kaiyu ZHANG (张凯宇), Haibin TANG (汤海滨), Jinbin CAO (曹晋滨). Cathode erosion site distributions in an applied-field magnetoplasmadynamic thruster[J]. Plasma Science and Technology, 2020, 22(9): 94008-094008. DOI: 10.1088/2058-6272/ab9172

Cathode erosion site distributions in an applied-field magnetoplasmadynamic thruster

Funds: This work was supported by the Fundamental Research Program (No. 11872093).
More Information
  • Received Date: December 24, 2019
  • Revised Date: May 05, 2020
  • Accepted Date: May 06, 2020
  • Erosion can influence cathode life, and is thus considered to be one of the main factors limiting the application of applied-field magnetoplasmadynamic thrusters. In this paper, erosion sites on graphite cathodes are studied so as to identify the influence of applied magnetic field and the ratio of propellant mass flow rate supplied from cathode and anode. The experiment results show that the application of applied magnetic field can significantly reduce the erosion rate of the cathode compared to that without magnetic field. The erosion sites on the cathode vary with the relative position of the convergent-divergent magnetic field, and are mainly distributed in the divergent part of the field. The erosion sites on the cathodes are found to be related to the propellant supply. The decreasing anode mass flow rate enlarges the range of erosion. These results are much helpful for the analysis of cathode erosion site location since they provide evidences of erosion mechanisms and point out the directions for further research.
  • [1]
    Wang L J et al 2019 IEEE Trans. Plasma Sci. 47 3496
    [2]
    Zhang Z et al 2019 Rev. Mod. Plasma Phys. 3 5
    [3]
    Zhang Z et al 2019 Plasma Sources Sci. Technol. 28 025008
    [4]
    Sheshadri T S 1991 Vacuum 42 923
    [5]
    Herdrich G et al 2013 Vacuum 88 36
    [6]
    Kodys A and Choueiri E Y 2005 A critical review of the state-of-the-art in the performance of applied-field magnetoplasmadynamic thrusters Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Tucson, Arizona) (Reston, VA: AIAA) (https://doi.org/10.2514/6.2005-4247)
    [7]
    Myers R M, Mantenieks M A and LaPointe M R 1991 MPD thruster technology Proc. Conf. on Advanced SEI Technologies (Cleveland) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1991-3568)
    [8]
    Sovey J S and Mantenieks M A 1991 J. Propul. Power 7 71
    [9]
    Polk J E 1993 Operation of thoriated tungsten cathodes AIP Conf. Proc. 271 1435
    [10]
    Tang H B et al 2011 J. Propul. Power 27 218
    [11]
    Schrade H O, Auweter-Kurtz M and Kurtz H L 1987 AIAA J.25 1105
    [12]
    Subramaniam V V, Hoyer K S and Lawless J L 1971 J. Propul.Power 7 565
    [13]
    Goodfellow K D, Pivirotto T J and Polk J E 1992 Applied-field magnetoplasmadynamic engine developments Proc. 28th Joint Propulsion Conf. and Exhibit (Nashville: AIAA)(https://doi.org/10.2514/6.1992-3293)
    [14]
    Myers R M et al 1991 J. Propul. Power 7 760
    [15]
    Polk J E et al 1990 Mechanisms of hot cathode erosion in plasma thrusters Proc. 21st Int. Electric Propulsion Conf.(Orlando, FL) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1990-2673)
    [16]
    Schrade H O, Auweter-Kurtz M and Kurtz H L 1987 Cathode phenomena in plasma thrusters Proc. 19th Int. Electric Propulsion Conf. (Colorado Springs) (Reston, VA: AIAA)(https://doi.org/10.2514/6.1987-1096)
    [17]
    Ferreira C M and Delcroix J L 1978 J. Appl. Phys. 49 2380
    [18]
    Babkin G V et al 1976 J. Appl. Mech. Tech. Phys. 17 767
    [19]
    Goodfellow K D 1996 High-current low-pressure cathode operation Proc. 32nd Joint Propulsion Conf. and Exhibit (Lake Buena Vista) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1996-3205)
    [20]
    Mikellides I et al 2004 Theoretical model of a hollow cathode insert plasma Proc. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit (Florida) (Reston, VA: AIAA) (https://doi.org/10.2514/6.2004-3817)
    [21]
    Zhang X et al 2017 J. Phys. D: Appl. Phys. 50 455203
    [22]
    Wang L J et al 2018 Phys. Plasmas 25 043511
    [23]
    Auweter-Kurtz M et al 1993 J. Propul. Power 9 882
    [24]
    Mantenieks M A and Myers R M 1993 100 kW class applied‐field thruster component wear AIP Conf. Proc. (https://doi.org/10.1063/1.43093)
    [25]
    Toki K and Kimura I 1979 Studies of current distribution on the hollow cathode of an MPD arcjet Proc. 14th Int. Electric Propulsion Conf. (Princeton) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1979-2113)
    [26]
    Kimura I, Toki K and Tanaka M 1982 AIAA J. 20 889
    [27]
    Tanaka M and Kimura I 1988 J. Propul. Power 4 428
    [28]
    Polk J E et al 1987 J. Propul. Power 3 33
    [29]
    Polk J E, Kelly A J and Jahn R G 1987 MPD thruster erosion research Proc. 19th Int. Electric Propulsion Conf. (Colorado Springs) (Reston, VA: AIAA) (https://doi.org/10.2514/6.1987-999)
    [30]
    Wang B et al 2018 Meas. Sci. Technol. 29 075302
    [31]
    Li Z F et al 2018 J. Phys. D: Appl. Phys. 51 085201
    [32]
    Kitaeva A et al 2019 Vacuum 159 324
    [33]
    Wang B J et al 2018 J. Vis. Exp. 142 e58510
    [34]
    Ekdahl C, Kribel R and Lovberg R 1967 Internal measurements of plasma rotation in an MPD arc Proc. 6th Electric Propulsion and Plasmadynamics Conf. (Colorado Springs) (AIAA) (https://doi.org/10.2514/6.1967-655)
    [35]
    Larson A V 1968 AIAA J. 6 1001
    [36]
    Wang L J et al 2019 Appl. Phys. Lett. 115 014101
    [37]
    Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion 2nd edn (Berlin: Springer) p 1
    [38]
    Mikellides P G, Turchi P J and Roderick N F 2000 J. Propul.Power 16 887
    [39]
    Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Process. 14 451
  • Related Articles

    [1]Shaobo GONG, Zhongbing SHI, Yixuan ZHOU, Tongchuan ZHANG, Jinming GAO, Dianlin ZHENG, Ping SUN, Liming YU, Wei CHEN, Wulyu ZHONG, Min XU, Xuru DUAN. Optical design of vertical edge Thomson scattering on HL-2M tokamak[J]. Plasma Science and Technology, 2023, 25(7): 075601. DOI: 10.1088/2058-6272/acbd8d
    [2]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [3]Yong LU (卢勇), Lijun CAI (蔡立君), Yuxiang LIU (刘雨祥), Jian LIU (刘健), Yinglong YUAN (袁应龙), Guoyao ZHENG (郑国尧), Dequan LIU (刘德权). Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model[J]. Plasma Science and Technology, 2017, 19(9): 95601-095601. DOI: 10.1088/2058-6272/aa7628
    [4]SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
    [5]CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15
    [6]CUI Xuewu (崔学武), PAN Yudong (潘宇东), CUI Zhengying (崔正英), LI Jiaxian (李佳鲜), et al.. HL-2M Divertor Geometry Exploration with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(12): 1184-1189. DOI: 10.1088/1009-0630/15/12/04
    [7]CEN Yishun (岑义顺), LI Qiang (李强), DING Yonghua (丁永华), CAI Lijun (蔡立君), et al.. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M[J]. Plasma Science and Technology, 2013, 15(9): 939-944. DOI: 10.1088/1009-0630/15/9/20
    [8]PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22
    [9]CAI Lijun (蔡立君), LIU Dequan (刘德权), RAN Hong (冉红), LI Jiaxian (李佳鲜), LI Yong (李勇), CAO Zeng (曹曾). Preliminary Calculation of Electromagnetic Loads on Vacuum Vessel of HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 271-276. DOI: 10.1088/1009-0630/15/3/16
    [10]LI Jiaxian (李佳鲜), PAN Yudong (潘宇东), ZHANG Jinhua (张锦华), CUI Xuewu (崔学武), CHEN Liaoyuan (陈燎原). Preliminary Analysis of Volt-Second Consumption on HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 235-239. DOI: 10.1088/1009-0630/15/3/09
  • Cited by

    Periodical cited type(6)

    1. Liu, Y., Li, W., Zhang, Y. et al. Development of a real-time tangential dispersion interferometer system and its first results for density feedback on EAST. Fusion Engineering and Design, 2025. DOI:10.1016/j.fusengdes.2025.114930
    2. Zhang, J., Yao, Y., Liu, Y. et al. Real-time data processing method for CO2 dispersion interferometer on EAST. Plasma Science and Technology, 2024, 26(8): 085603. DOI:10.1088/2058-6272/ad4597
    3. Zhang, W., Wu, T.Y., Li, Y.G. et al. High-precision digital time-amplitude analysis system for the neutron Time-Of-Flight spectrometer in HL-2M. Journal of Instrumentation, 2023, 18(9): P09014. DOI:10.1088/1748-0221/18/09/P09014
    4. Wen, X., Zhu, R., He, Z. et al. Development of a novel simulated neutron pulse signal generator for flux measurement. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022. DOI:10.1016/j.nima.2022.166998
    5. Zhang, W., Wu, T.Y., Li, Y.G. et al. Compact phase comparison system for the synthetic HCOOH laser diagnostic system in HL-2A. Journal of Instrumentation, 2022, 17(9): P09037. DOI:10.1088/1748-0221/17/09/P09037
    6. Zhang, W., Wu, T.Y., Li, Y.G. et al. An FFT overlap method for high bandwidth far-infrared laser Interferometer in HL-2A. Journal of Instrumentation, 2021, 16(9): P09010. DOI:10.1088/1748-0221/16/09/P09010

    Other cited types(0)

Catalog

    Article views (142) PDF downloads (208) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return