Advanced Search+
Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620
Citation: Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620

NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant

Funds: This work was supported by the National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2019A13), the National Key Research and Development Project of China (No. 2019YFC1805505), the Shanxi Province Bidding Project (No. 20191101007), the Major Science and Technology Projects of Shanxi Province (No. 20181102017), and State Key Laboratory of Organic Geochemistry (No. SKLOG -201909).
More Information
  • Received Date: October 11, 2020
  • Revised Date: December 20, 2020
  • Accepted Date: December 21, 2020
  • NOx storage and reduction (NSR) technology has been regarded as one of the most promising strategies for the removal of nitric oxides (NOx) from lean-burn engines, and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades. This work reports the NSR of nitric oxide (NO) by combining non-thermal plasma (NTP) and Co/Pt/Ba/γ-Al2O3 (Co/PBA) catalyst using methane as a reductant. The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150 °C–350 °C, and NOx conversion of the 8% Co/PBA catalyst reaches 96.8% at 350 °C. Oxygen (O2) has a significant effect on the removal of NOx, and the NOx conversion increases firstly and then decreases when the O2 concentration ranges from 2% to 10%. Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts. There is a negative correlation between sulfur dioxide (SO2) and NOx conversion in the NTP system, and the 8% Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts, which shows that Co has a certain SO2 resistance.
  • [1]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [2]
    Samojeden B and Grzybek T 2016 Energy 116 1484
    [3]
    Zhu T et al 2020 Catalysts 10 135
    [4]
    Daood S S, Yelland T S and Nimmo W 2017 Fuel 208 353
    [5]
    Han L P et al 2019 Environ. Sci. Technol. 53 6462
    [6]
    Peters F et al 2016 Plasma Sci. Technol. 18 406
    [7]
    Yang R Y et al 2017 Chem. Eng. J. 326 656
    [8]
    Flura A et al 2012 Appl. Catal. B Environ. 126 275
    [9]
    Mei X Y et al 2017 Sci. Rep-UK 7 42862
    [10]
    Zhang C et al 2020 Dalton T. 49 3970
    [11]
    Durairaj R, Subramanyan N and Duraiswamy D 2019 J. Ceram. Process. Res. 20 621
    [12]
    Liu Z M and Woo S I 2006 Catal. Rev. 48 43
    [13]
    Mei X Y et al 2015 RSC Adv. 5 78061
    [14]
    Zhang C et al 2020 Catal. Today 339 148
    [15]
    Liu Y H C et al 2018 Plasma Sci. Technol. 20 014002
    [16]
    Pan H and Qiang Y 2014 Plasma Chem. Plasma Process.34 811
    [17]
    Zhu T et al 2018 Plasma Sci. Technol. 20 054007
    [18]
    Haddouche A and Lemerini M 2015 Plasma Sci. Technol.17 589
    [19]
    Wei T S et al 2018 Environ. Sci. Pollut. Res. 25 35582
    [20]
    Zhu T et al 2020 Plasma Sci. Technol. 22 034011
    [21]
    Haddouche A et al 2015 Plasma Sci. Technol. 17 589
    [22]
    Gholami R et al 2018 Philos. T. R. Soc. A 376 20170054
    [23]
    Jablonowski H et al 2015 Phys. Plasmas 22 122008
    [24]
    Liu D P, Liu Y H and Chen B X 2006 Plasma Sci. Technol. 8 701
    [25]
    Chen S et al 2018 Environ. Sci. Technol. 52 8568
    [26]
    Wang H et al 2013 Chem. Commun. 49 9353
    [27]
    Zhang Z S et al 2015 Catal. Today 258 175
    [28]
    Kim J G et al 2008 J. Ind. Eng. Chem. 14 841
    [29]
    Li L et al 2013 Chinese J. Catal. 34 1087
    [30]
    Bai Z F et al 2019 Appl. Catal. B Environ. 249 333
    [31]
    Bai Z F et al 2017 Catal. Commun. 102 81
    [32]
    Wang X Y et al 2010 Appl. Catal. B Environ. 100 19
    [33]
    Zhang Z S et al 2015 Catal. Today 258 386
    [34]
    Zhang Z S et al 2015 Appl. Catal. B Environ. 165 232
    [35]
    Bai Z F et al 2017 Chem. Eng. J. 314 688
    [36]
    Guo L et al 2013 J. Hazard. Mater. 260 543
    [37]
    Thomas C R et al 2019 Appl. Catal. B Environ. 244 284
    [38]
    Wang H et al 2013 Catal. Today 211 66
    [39]
    Peng H H et al 2016 Environ. Sci. Pollut. R 23 19590
    [40]
    Wang X Y et al 2013 Sci. Rep.-UK 3 1559
    [41]
    Onrubia-Calvo J A et al 2020 Catalysts 10 208
    [42]
    Wen W et al 2016 RSC Adv. 6 74046
  • Related Articles

    [1]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [2]Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6
    [3]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [4]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [5]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [6]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [7]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [8]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [9]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [10]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
  • Cited by

    Periodical cited type(2)

    1. Andreev, N.E., Umarov, I.R., Popov, V.S. Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research. Bulletin of the Lebedev Physics Institute, 2023. DOI:10.3103/S1068335623190028
    2. Elaji, A., Bake, M.A., Tang, S. et al. Bright attosecond polarized γ-ray emission from the interaction of an intense laser pulse with non-uniform near-critical-density plasma. Chinese Journal of Physics, 2022. DOI:10.1016/j.cjph.2022.05.001

    Other cited types(0)

Catalog

    Article views (125) PDF downloads (108) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return