Citation: | Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620 |
[1] |
Zhao D et al 2018 Plasma Sci. Technol. 20 014020
|
[2] |
Samojeden B and Grzybek T 2016 Energy 116 1484
|
[3] |
Zhu T et al 2020 Catalysts 10 135
|
[4] |
Daood S S, Yelland T S and Nimmo W 2017 Fuel 208 353
|
[5] |
Han L P et al 2019 Environ. Sci. Technol. 53 6462
|
[6] |
Peters F et al 2016 Plasma Sci. Technol. 18 406
|
[7] |
Yang R Y et al 2017 Chem. Eng. J. 326 656
|
[8] |
Flura A et al 2012 Appl. Catal. B Environ. 126 275
|
[9] |
Mei X Y et al 2017 Sci. Rep-UK 7 42862
|
[10] |
Zhang C et al 2020 Dalton T. 49 3970
|
[11] |
Durairaj R, Subramanyan N and Duraiswamy D 2019 J. Ceram. Process. Res. 20 621
|
[12] |
Liu Z M and Woo S I 2006 Catal. Rev. 48 43
|
[13] |
Mei X Y et al 2015 RSC Adv. 5 78061
|
[14] |
Zhang C et al 2020 Catal. Today 339 148
|
[15] |
Liu Y H C et al 2018 Plasma Sci. Technol. 20 014002
|
[16] |
Pan H and Qiang Y 2014 Plasma Chem. Plasma Process.34 811
|
[17] |
Zhu T et al 2018 Plasma Sci. Technol. 20 054007
|
[18] |
Haddouche A and Lemerini M 2015 Plasma Sci. Technol.17 589
|
[19] |
Wei T S et al 2018 Environ. Sci. Pollut. Res. 25 35582
|
[20] |
Zhu T et al 2020 Plasma Sci. Technol. 22 034011
|
[21] |
Haddouche A et al 2015 Plasma Sci. Technol. 17 589
|
[22] |
Gholami R et al 2018 Philos. T. R. Soc. A 376 20170054
|
[23] |
Jablonowski H et al 2015 Phys. Plasmas 22 122008
|
[24] |
Liu D P, Liu Y H and Chen B X 2006 Plasma Sci. Technol. 8 701
|
[25] |
Chen S et al 2018 Environ. Sci. Technol. 52 8568
|
[26] |
Wang H et al 2013 Chem. Commun. 49 9353
|
[27] |
Zhang Z S et al 2015 Catal. Today 258 175
|
[28] |
Kim J G et al 2008 J. Ind. Eng. Chem. 14 841
|
[29] |
Li L et al 2013 Chinese J. Catal. 34 1087
|
[30] |
Bai Z F et al 2019 Appl. Catal. B Environ. 249 333
|
[31] |
Bai Z F et al 2017 Catal. Commun. 102 81
|
[32] |
Wang X Y et al 2010 Appl. Catal. B Environ. 100 19
|
[33] |
Zhang Z S et al 2015 Catal. Today 258 386
|
[34] |
Zhang Z S et al 2015 Appl. Catal. B Environ. 165 232
|
[35] |
Bai Z F et al 2017 Chem. Eng. J. 314 688
|
[36] |
Guo L et al 2013 J. Hazard. Mater. 260 543
|
[37] |
Thomas C R et al 2019 Appl. Catal. B Environ. 244 284
|
[38] |
Wang H et al 2013 Catal. Today 211 66
|
[39] |
Peng H H et al 2016 Environ. Sci. Pollut. R 23 19590
|
[40] |
Wang X Y et al 2013 Sci. Rep.-UK 3 1559
|
[41] |
Onrubia-Calvo J A et al 2020 Catalysts 10 208
|
[42] |
Wen W et al 2016 RSC Adv. 6 74046
|
[1] | Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a |
[2] | Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6 |
[3] | Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e |
[4] | A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f |
[5] | Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2 |
[6] | Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c |
[7] | Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940 |
[8] | ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04 |
[9] | GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02 |
[10] | WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04 |
1. | Andreev, N.E., Umarov, I.R., Popov, V.S. Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research. Bulletin of the Lebedev Physics Institute, 2023. DOI:10.3103/S1068335623190028 |
2. | Elaji, A., Bake, M.A., Tang, S. et al. Bright attosecond polarized γ-ray emission from the interaction of an intense laser pulse with non-uniform near-critical-density plasma. Chinese Journal of Physics, 2022. DOI:10.1016/j.cjph.2022.05.001 |