Advanced Search+
Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620
Citation: Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620

NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant

Funds: This work was supported by the National Engineering Laboratory for Mobile Source Emission Control Technology (No. NELMS2019A13), the National Key Research and Development Project of China (No. 2019YFC1805505), the Shanxi Province Bidding Project (No. 20191101007), the Major Science and Technology Projects of Shanxi Province (No. 20181102017), and State Key Laboratory of Organic Geochemistry (No. SKLOG -201909).
More Information
  • Received Date: October 11, 2020
  • Revised Date: December 20, 2020
  • Accepted Date: December 21, 2020
  • NOx storage and reduction (NSR) technology has been regarded as one of the most promising strategies for the removal of nitric oxides (NOx) from lean-burn engines, and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades. This work reports the NSR of nitric oxide (NO) by combining non-thermal plasma (NTP) and Co/Pt/Ba/γ-Al2O3 (Co/PBA) catalyst using methane as a reductant. The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150 °C–350 °C, and NOx conversion of the 8% Co/PBA catalyst reaches 96.8% at 350 °C. Oxygen (O2) has a significant effect on the removal of NOx, and the NOx conversion increases firstly and then decreases when the O2 concentration ranges from 2% to 10%. Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts. There is a negative correlation between sulfur dioxide (SO2) and NOx conversion in the NTP system, and the 8% Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts, which shows that Co has a certain SO2 resistance.
  • [1]
    Zhao D et al 2018 Plasma Sci. Technol. 20 014020
    [2]
    Samojeden B and Grzybek T 2016 Energy 116 1484
    [3]
    Zhu T et al 2020 Catalysts 10 135
    [4]
    Daood S S, Yelland T S and Nimmo W 2017 Fuel 208 353
    [5]
    Han L P et al 2019 Environ. Sci. Technol. 53 6462
    [6]
    Peters F et al 2016 Plasma Sci. Technol. 18 406
    [7]
    Yang R Y et al 2017 Chem. Eng. J. 326 656
    [8]
    Flura A et al 2012 Appl. Catal. B Environ. 126 275
    [9]
    Mei X Y et al 2017 Sci. Rep-UK 7 42862
    [10]
    Zhang C et al 2020 Dalton T. 49 3970
    [11]
    Durairaj R, Subramanyan N and Duraiswamy D 2019 J. Ceram. Process. Res. 20 621
    [12]
    Liu Z M and Woo S I 2006 Catal. Rev. 48 43
    [13]
    Mei X Y et al 2015 RSC Adv. 5 78061
    [14]
    Zhang C et al 2020 Catal. Today 339 148
    [15]
    Liu Y H C et al 2018 Plasma Sci. Technol. 20 014002
    [16]
    Pan H and Qiang Y 2014 Plasma Chem. Plasma Process.34 811
    [17]
    Zhu T et al 2018 Plasma Sci. Technol. 20 054007
    [18]
    Haddouche A and Lemerini M 2015 Plasma Sci. Technol.17 589
    [19]
    Wei T S et al 2018 Environ. Sci. Pollut. Res. 25 35582
    [20]
    Zhu T et al 2020 Plasma Sci. Technol. 22 034011
    [21]
    Haddouche A et al 2015 Plasma Sci. Technol. 17 589
    [22]
    Gholami R et al 2018 Philos. T. R. Soc. A 376 20170054
    [23]
    Jablonowski H et al 2015 Phys. Plasmas 22 122008
    [24]
    Liu D P, Liu Y H and Chen B X 2006 Plasma Sci. Technol. 8 701
    [25]
    Chen S et al 2018 Environ. Sci. Technol. 52 8568
    [26]
    Wang H et al 2013 Chem. Commun. 49 9353
    [27]
    Zhang Z S et al 2015 Catal. Today 258 175
    [28]
    Kim J G et al 2008 J. Ind. Eng. Chem. 14 841
    [29]
    Li L et al 2013 Chinese J. Catal. 34 1087
    [30]
    Bai Z F et al 2019 Appl. Catal. B Environ. 249 333
    [31]
    Bai Z F et al 2017 Catal. Commun. 102 81
    [32]
    Wang X Y et al 2010 Appl. Catal. B Environ. 100 19
    [33]
    Zhang Z S et al 2015 Catal. Today 258 386
    [34]
    Zhang Z S et al 2015 Appl. Catal. B Environ. 165 232
    [35]
    Bai Z F et al 2017 Chem. Eng. J. 314 688
    [36]
    Guo L et al 2013 J. Hazard. Mater. 260 543
    [37]
    Thomas C R et al 2019 Appl. Catal. B Environ. 244 284
    [38]
    Wang H et al 2013 Catal. Today 211 66
    [39]
    Peng H H et al 2016 Environ. Sci. Pollut. R 23 19590
    [40]
    Wang X Y et al 2013 Sci. Rep.-UK 3 1559
    [41]
    Onrubia-Calvo J A et al 2020 Catalysts 10 208
    [42]
    Wen W et al 2016 RSC Adv. 6 74046
  • Related Articles

    [1]Yunming TAO, Yuebing XU, Kuan CHANG, Meiling CHEN, Sergey A STAROSTIN, Hujun XU, Liangliang LIN. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO[J]. Plasma Science and Technology, 2023, 25(8): 085504. DOI: 10.1088/2058-6272/acc14c
    [2]Tao ZHU, Xing ZHANG, Zhenguo LI, Xiaoning REN, Baodong WANG, Xuyang CHONG, Hongli MA. Selective catalytic reduction of NOx with NH3 assisted by non-thermal plasma over CeMnZrOx@TiO2 core–shell catalyst[J]. Plasma Science and Technology, 2022, 24(5): 054006. DOI: 10.1088/2058-6272/ac3108
    [3]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [4]LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d
    [5]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [6]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华). Influence of Ionization Degrees on Conversion of CO and CO 2 in Atmospheric Plasma near the Ground[J]. Plasma Science and Technology, 2014, 16(8): 782-788. DOI: 10.1088/1009-0630/16/8/09
    [7]XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09
    [8]QI Bin (亓斌), WANG Shouyu (王守宇), ZHAO Xingyan (赵兴言), ZHU Xiaoying (祝笑颖), SUN Dapeng (孙大鹏), LIU Chen (刘晨), XU Changjiang (徐长江). The Influence of Triaxiality Parameter Υ on the Chiral Doublet Bands with (?g9/2)-1 (?h11/2)2 Configuration[J]. Plasma Science and Technology, 2012, 14(7): 595-597. DOI: 10.1088/1009-0630/14/7/06
    [9]CHEN Shaowen(陈少文), ZHANG Wenlan(张文澜), FAN Lixian(范丽仙), TANG Qiang(唐强), LIU Xiaowei(刘小伟). The Effect of the Size of Radiotherapy Photon Beams on the Absorbed Dose to an Al2O3 Dosimeter[J]. Plasma Science and Technology, 2012, 14(6): 558-562. DOI: 10.1088/1009-0630/14/6/28
    [10]LEI Wenwen(雷雯雯), LI Xingcun(李兴存), CHEN Qiang (陈强), WANG Zhengduo(王正铎). Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic[J]. Plasma Science and Technology, 2012, 14(2): 129-133. DOI: 10.1088/1009-0630/14/2/09
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Pang, Z., Zheng, H. et al. Electrical Properties of CF3SO2F Insulating Gas Based on Density Functional Theory. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(1): 297-303. DOI:10.1109/TDEI.2023.3308083
    2. Li, L., Chen, J., Yi, C. et al. Mechanisms for insulation recovery during repetitive breakdowns in gas gaps. Physics of Plasmas, 2023, 30(12): 120501. DOI:10.1063/5.0166960
    3. Huang, C., Yin, Y., Liu, S. et al. Study on impact of gap difference on plasma distribution of direct current vacuum circuit breaker with double-break. AIP Advances, 2023, 13(11): 115226. DOI:10.1063/5.0175155
    4. Li, L., Wang, B., Yi, C. et al. Factors and Underlying Mechanisms That Influence the Repetitive Breakdown Characteristics of Corona-Stabilized Switches. Applied Sciences (Switzerland), 2023, 13(17): 9518. DOI:10.3390/app13179518
    5. Ma, Y., Gao, G., Xiang, Y. et al. Research on the energy consumption mechanism and characteristics of the gallium indium tin liquid metal arcing process. Plasma Science and Technology, 2023, 25(9): 095502. DOI:10.1088/2058-6272/acc234
    6. Zhao, S., Wang, W., Qi, Z. et al. Partial Discharge Measurement of GIS With Damped AC (DAC) Voltage: Case Study for the Particle on Insulator. IEEE Transactions on Power Delivery, 2023, 38(3): 1665-1673. DOI:10.1109/TPWRD.2022.3223477

    Other cited types(0)

Catalog

    Article views (125) PDF downloads (108) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return