Citation: | Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4 |
[1] |
Galani S M et al 2020 Int. J. Hydrog. Energy 45 18635
|
[2] |
Yuan Y J et al 2016 ACS Catal. 6 532
|
[3] |
Hunter B M, Gray H B and Müller A M 2016 Chem. Rev. 116 14120
|
[4] |
Evans T A and Choi K S 2020 ACS Appl. Energy Mater.3 5563
|
[5] |
Huang J et al 2020 ACS Sustain. Chem. Eng. 8 10554
|
[6] |
Yu X X et al 2019 Int. J. Hydrog. Energy 44 29717
|
[7] |
Seitz L C et al 2016 Science 353 1011
|
[8] |
Lee Y et al 2012 J. Phys. Chem. Lett. 3 399
|
[9] |
Gao X H et al 2016 Angew. Chem. Int. Ed. 55 6290
|
[10] |
Wang W et al 2018 J. Mater. Chem. A 6 14299
|
[11] |
Zhang C et al 2018 Surf. Coat. Technol. 347 407
|
[12] |
Zhao Z et al 2018 Adv. Sci. 5 1800760
|
[13] |
Chodankar N R et al 2018 J. Electrochem. Soc. 165 A2446
|
[14] |
Owusu K A et al 2020 Chin. Chem. Lett. 31 1620
|
[15] |
Huang D K et al 2018 Carbon 129 468
|
[16] |
Cheng N Y et al 2015 Chem. Commun. 51 1616
|
[17] |
Wu T X et al 2019 Chem. Commun. 55 2344
|
[18] |
Chen Y Y et al 2019 J. Electrochem. Soc. 167 056501
|
[19] |
Adusei P K et al 2020 J. Energy Chem. 40 120
|
[20] |
Pereira J F S et al 2019 Electrochem. Commun. 105 106497
|
[21] |
Liu T Q et al 2019 ACS Appl. Energy Mater. 2 5162
|
[22] |
Dixon D et al 2016 J. Power Sources 332 240
|
[23] |
Chang S H et al 2016 J. Power Sources 336 99
|
[24] |
Naseh M V et al 2010 Carbon 48 1369
|
[25] |
Gao M et al 2020 Surf. Coat. Technol. 404 126498
|
[26] |
Lin J H et al 2018 J. Mater. Chem. A 6 908
|
[27] |
Li L Q et al 2017 ACS Energy Lett. 2 294
|
[28] |
Lu X Y et al 2015 J. Am. Chem. Soc. 137 2901
|
[29] |
Ren C L et al 2020 J. Colloid Interface Sci. 569 298
|
[30] |
Gao M et al 2019 Nanomaterials 9 568
|
[31] |
Chien H H et al 2018 Electrochim. Acta 260 391
|
[32] |
Dutta A and Pradhan N 2017 J. Phys. Chem. Lett. 8 144
|
[33] |
Bajdich M et al 2013 J. Am. Chem. Soc. 135 13521
|
[34] |
Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Sci.Rep. 5 13801
|
[35] |
Ge R X et al 2019 Adv. Energy Mater. 9 1901313
|
[36] |
Wu A P et al 2018 Nano Energy 44 353
|
[37] |
McCrory C C L et al 2015 J. Am. Chem. Soc. 137 4347
|
[38] |
Meng J et al 2018 ACS Appl. Mater. Interfaces 10 13652
|
[39] |
Zhao Y et al 2013 Nat. Commun. 4 2390
|
[40] |
Qin J J et al 2020 Compos. Sci. Technol. 195 108198
|
[41] |
Zhou J H et al 2017 Int. J. Hydrog. Energy 42 27004
|
[1] | Weigang CHEN (陈卫刚), Haixia WU (武海霞), Jiawei FAN (樊佳炜), Zhi FANG (方志), Shaohua LIN (林少华). Activated persulfate by DBD plasma and activated carbon for the degradation of acid orange II[J]. Plasma Science and Technology, 2020, 22(3): 34009-034009. DOI: 10.1088/2058-6272/ab5f34 |
[2] | Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6 |
[3] | Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4 |
[4] | Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501 |
[5] | LI Hongtao (李洪涛), KAN Jinfeng (阚金峰), JIANG Bailing (蒋百灵), LIU Yanjie (刘燕婕), LIU Zheng (刘政). Study of the Deburring Process for Low Carbon Steel by Plasma Electrolytic Oxidation[J]. Plasma Science and Technology, 2016, 18(8): 860-864. DOI: 10.1088/1009-0630/18/8/12 |
[6] | WANG Huijuan (王慧娟), GUO He (郭贺), LIU Yongjie (刘永杰), YI Chengwu (依成武). Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas[J]. Plasma Science and Technology, 2015, 17(10): 881-886. DOI: 10.1088/1009-0630/17/10/12 |
[7] | GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09 |
[8] | LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17 |
[9] | JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18 |
[10] | Jeong Woo YUN. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials[J]. Plasma Science and Technology, 2013, 15(6): 521-527. DOI: 10.1088/1009-0630/15/6/07 |
1. | Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643 | |
2. | Liu, Z.-B., Wang, X.-C., Zhang, Y.-T. Numerical Study on Kinetic Effects of Driving Frequency in Atmospheric Radio Frequency Discharges Using Deep Neural Network. IEEE Transactions on Plasma Science, 2023, 51(5): 1212-1222. DOI:10.1109/TPS.2023.3267733 | |
3. | Ai, F., Liu, Z.-B., Zhang, Y.-T. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning | [结合机器学习的大气压介质阻挡放电数值模拟研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(24): 245201. DOI:10.7498/aps.71.20221555 | |
4. | Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Comparing Study on Formation of Large Discharge Currents in Atmospheric Pulse-Modulated Radio Frequency Discharges. IEEE Transactions on Plasma Science, 2022, 50(9): 2796-2804. DOI:10.1109/TPS.2022.3188019 | |
5. | Wang, X., Gao, S., Zhang, Y. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium-oxygen admixtures. Plasma Science and Technology, 2022, 24(8): 085401. DOI:10.1088/2058-6272/ac67bf | |
6. | Gao, S.-H., Cheng, R.-G., Zhang, Y.-T. Numerical Study on Operation Optimization of Atmospheric Radio-Frequency Glow Discharges Modulated by Pulses. IEEE Transactions on Plasma Science, 2022, 50(3): 609-618. DOI:10.1109/TPS.2022.3147853 | |
7. | Gao, S.-H., Wang, X.-L., Zhang, Y.-T. Modeling study on the enhancement of atmospheric pulse-modulated radio-frequency discharge assisted by pulsed voltage. Physics of Plasmas, 2021, 28(11): 0061546. DOI:10.1063/5.0061546 | |
8. | ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688 | |
9. | Wang, X.-L., Gao, S.-H., Zhang, Y.-T. Numerical study on optimization of atmospheric pulse-modulated radio frequency discharges in the very high frequency range. Physics of Plasmas, 2021, 28(7): 073511. DOI:10.1063/5.0048966 | |
10. | Shen, J., Cheng, C., Xu, Z. et al. Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_1 | |
11. | Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers | [脉冲调制条件下介质阻挡特高频放电特性的数值模拟]. Wuli Xuebao/Acta Physica Sinica, 2020, 69(11): 115204. DOI:10.7498/aps.69.20191853 |