Advanced Search+
Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4
Citation: Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4

Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment

Funds: This work was funded by Shenzhen Science and Technology Innovation Committee (No. JCYJ20180507182200750).
More Information
  • Received Date: October 19, 2020
  • Revised Date: January 03, 2021
  • Accepted Date: January 04, 2021
  • Commercial carbon cloth (CC) is an ideal electrocatalysis material to produce oxygen evolution reaction (OER) due to its high conductive and 3D flexible structure, but the lacked active sites limit its application. For improving its OER performance, the present study proposed an effective method combining plasma and acid treatment to introduce oxygen-containing functional groups and produce more active sites on its surface. Compared to the pristine CC, the plasma and acid treated carbon cloth (PN-CC) delivers a reduced overpotential by 34.6% to achieve current density of 10 mA cm−2. The Tafel slope declines from 97.5 mV dec–1 (pristine CC) to 55.9 mV dec–1 (PN-CC), showing an increased OER kinetic. Additionally, PN-CC electrocatalyst shows outstanding stability after 5000 cycles or 25 000 s. The combination of plasma and acid treatment shows a significant potential in surface modification for electrocatalysts.
  • [1]
    Galani S M et al 2020 Int. J. Hydrog. Energy 45 18635
    [2]
    Yuan Y J et al 2016 ACS Catal. 6 532
    [3]
    Hunter B M, Gray H B and Müller A M 2016 Chem. Rev. 116 14120
    [4]
    Evans T A and Choi K S 2020 ACS Appl. Energy Mater.3 5563
    [5]
    Huang J et al 2020 ACS Sustain. Chem. Eng. 8 10554
    [6]
    Yu X X et al 2019 Int. J. Hydrog. Energy 44 29717
    [7]
    Seitz L C et al 2016 Science 353 1011
    [8]
    Lee Y et al 2012 J. Phys. Chem. Lett. 3 399
    [9]
    Gao X H et al 2016 Angew. Chem. Int. Ed. 55 6290
    [10]
    Wang W et al 2018 J. Mater. Chem. A 6 14299
    [11]
    Zhang C et al 2018 Surf. Coat. Technol. 347 407
    [12]
    Zhao Z et al 2018 Adv. Sci. 5 1800760
    [13]
    Chodankar N R et al 2018 J. Electrochem. Soc. 165 A2446
    [14]
    Owusu K A et al 2020 Chin. Chem. Lett. 31 1620
    [15]
    Huang D K et al 2018 Carbon 129 468
    [16]
    Cheng N Y et al 2015 Chem. Commun. 51 1616
    [17]
    Wu T X et al 2019 Chem. Commun. 55 2344
    [18]
    Chen Y Y et al 2019 J. Electrochem. Soc. 167 056501
    [19]
    Adusei P K et al 2020 J. Energy Chem. 40 120
    [20]
    Pereira J F S et al 2019 Electrochem. Commun. 105 106497
    [21]
    Liu T Q et al 2019 ACS Appl. Energy Mater. 2 5162
    [22]
    Dixon D et al 2016 J. Power Sources 332 240
    [23]
    Chang S H et al 2016 J. Power Sources 336 99
    [24]
    Naseh M V et al 2010 Carbon 48 1369
    [25]
    Gao M et al 2020 Surf. Coat. Technol. 404 126498
    [26]
    Lin J H et al 2018 J. Mater. Chem. A 6 908
    [27]
    Li L Q et al 2017 ACS Energy Lett. 2 294
    [28]
    Lu X Y et al 2015 J. Am. Chem. Soc. 137 2901
    [29]
    Ren C L et al 2020 J. Colloid Interface Sci. 569 298
    [30]
    Gao M et al 2019 Nanomaterials 9 568
    [31]
    Chien H H et al 2018 Electrochim. Acta 260 391
    [32]
    Dutta A and Pradhan N 2017 J. Phys. Chem. Lett. 8 144
    [33]
    Bajdich M et al 2013 J. Am. Chem. Soc. 135 13521
    [34]
    Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Sci.Rep. 5 13801
    [35]
    Ge R X et al 2019 Adv. Energy Mater. 9 1901313
    [36]
    Wu A P et al 2018 Nano Energy 44 353
    [37]
    McCrory C C L et al 2015 J. Am. Chem. Soc. 137 4347
    [38]
    Meng J et al 2018 ACS Appl. Mater. Interfaces 10 13652
    [39]
    Zhao Y et al 2013 Nat. Commun. 4 2390
    [40]
    Qin J J et al 2020 Compos. Sci. Technol. 195 108198
    [41]
    Zhou J H et al 2017 Int. J. Hydrog. Energy 42 27004
  • Related Articles

    [1]Tiantian SUN, Xinchen JIANG, Zhi LI, Xiang GU, Xueyun WANG, Lili DONG, Danke YANG, Pengmin LI, Hanqing WANG, Shuo LIU, Yingying LI, Huasheng XIE, Yuejiang SHI, Yunfeng LIANG, Minsheng LIU, the EHL-2 Team. Characterization of fast ion loss in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024002. DOI: 10.1088/2058-6272/ad8dfb
    [2]Guanming YANG, Yueqiang LIU, Zhibin WANG, Yongqin WANG, Yutian MIAO, Guangzhou HAO. Effect of ideal internal MHD instabilities on NBI fast ion redistribution in ITER 15 MA scenario[J]. Plasma Science and Technology, 2023, 25(5): 055102. DOI: 10.1088/2058-6272/acab43
    [3]Siqi WANG, Huishan CAI, Baofeng GAO, Ding LI. Stabilization of ion-temperature-gradient mode by trapped fast ions[J]. Plasma Science and Technology, 2022, 24(6): 065102. DOI: 10.1088/2058-6272/ac5e73
    [4]Dingzong ZHANG (张定宗), Youjun HU (胡友俊), Nong XIANG (项农), Cheng YANG (杨程), Wei SHEN (申伟), Yanqing HUANG (黄艳清), Hongbo LIU (刘洪波). Numerical study on the loss of fast ions produced by minority ion cyclotron resonance heating in EAST[J]. Plasma Science and Technology, 2021, 23(11): 115101. DOI: 10.1088/2058-6272/ac16be
    [5]Yingfeng XU (徐颖峰), Youjun HU (胡友俊), Xiaodong ZHANG (张晓东), Xingyuan XU (徐行远), Lei YE (叶磊), Xiaotao XIAO (肖小涛), Zhen ZHENG (郑振). Simulations of NBI fast ion loss in the presence of toroidal field ripple on EAST[J]. Plasma Science and Technology, 2021, 23(9): 95102-095102. DOI: 10.1088/2058-6272/ac0717
    [6]Zhen ZHENG (郑振), Nong XIANG (项农), Cheng YANG (杨程), Yingfeng XU (徐颖峰). Effects of fast ions produced by ICRF heating on the pressure at EAST[J]. Plasma Science and Technology, 2020, 22(2): 25101-025101. DOI: 10.1088/2058-6272/ab4ff5
    [7]Dawei GUO (郭大伟), Mousen CHENG (程谋森), Xiaokang LI (李小康), Bixuan CHE (车碧轩), Xiong YANG (杨雄), Moge WANG (王墨戈). Measurement of transient neutral gas puff pressure in the NUDT_IPPTx by a fast ionization gauge[J]. Plasma Science and Technology, 2018, 20(12): 125506. DOI: 10.1088/2058-6272/aade84
    [8]HUANG Haihong(黄海宏), YAN Teng(晏腾), WANG Haixin(王海欣). Application of a Current and Voltage Mixed Control Mode for the New Fast Control Power Supply at EAST[J]. Plasma Science and Technology, 2014, 16(4): 420-423. DOI: 10.1088/1009-0630/16/4/22
    [9]ZANG Linge (臧临阁), M. TAKEUCHI, N. NISHINO, T. MIZUUCHI, S. OHSHIMA, K. KASAJIMA, M. SHA, K. MUKAI, et al. Observation of Edge Plasma Fluctuations with a Fast Camera in Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 213-216. DOI: 10.1088/1009-0630/15/3/04
    [10]LI Jiajia, HU Zhanghu, SONG Yuanhong, WANG Younian. Effects of Fast-Ion Injection on a Magnetized Sheath near a Floating Wall[J]. Plasma Science and Technology, 2013, 15(1): 1-6. DOI: 10.1088/1009-0630/15/1/01

Catalog

    Article views (133) PDF downloads (231) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return