Advanced Search+
Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4
Citation: Tingting MEI (梅婷婷), Ming GAO (高明), Danni LIU (刘丹妮), Yu WANG (王裕), Yifan HUANG (黄逸凡). Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment[J]. Plasma Science and Technology, 2021, 23(2): 25504-025504. DOI: 10.1088/2058-6272/abd8b4

Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment

Funds: This work was funded by Shenzhen Science and Technology Innovation Committee (No. JCYJ20180507182200750).
More Information
  • Received Date: October 19, 2020
  • Revised Date: January 03, 2021
  • Accepted Date: January 04, 2021
  • Commercial carbon cloth (CC) is an ideal electrocatalysis material to produce oxygen evolution reaction (OER) due to its high conductive and 3D flexible structure, but the lacked active sites limit its application. For improving its OER performance, the present study proposed an effective method combining plasma and acid treatment to introduce oxygen-containing functional groups and produce more active sites on its surface. Compared to the pristine CC, the plasma and acid treated carbon cloth (PN-CC) delivers a reduced overpotential by 34.6% to achieve current density of 10 mA cm−2. The Tafel slope declines from 97.5 mV dec–1 (pristine CC) to 55.9 mV dec–1 (PN-CC), showing an increased OER kinetic. Additionally, PN-CC electrocatalyst shows outstanding stability after 5000 cycles or 25 000 s. The combination of plasma and acid treatment shows a significant potential in surface modification for electrocatalysts.
  • [1]
    Galani S M et al 2020 Int. J. Hydrog. Energy 45 18635
    [2]
    Yuan Y J et al 2016 ACS Catal. 6 532
    [3]
    Hunter B M, Gray H B and Müller A M 2016 Chem. Rev. 116 14120
    [4]
    Evans T A and Choi K S 2020 ACS Appl. Energy Mater.3 5563
    [5]
    Huang J et al 2020 ACS Sustain. Chem. Eng. 8 10554
    [6]
    Yu X X et al 2019 Int. J. Hydrog. Energy 44 29717
    [7]
    Seitz L C et al 2016 Science 353 1011
    [8]
    Lee Y et al 2012 J. Phys. Chem. Lett. 3 399
    [9]
    Gao X H et al 2016 Angew. Chem. Int. Ed. 55 6290
    [10]
    Wang W et al 2018 J. Mater. Chem. A 6 14299
    [11]
    Zhang C et al 2018 Surf. Coat. Technol. 347 407
    [12]
    Zhao Z et al 2018 Adv. Sci. 5 1800760
    [13]
    Chodankar N R et al 2018 J. Electrochem. Soc. 165 A2446
    [14]
    Owusu K A et al 2020 Chin. Chem. Lett. 31 1620
    [15]
    Huang D K et al 2018 Carbon 129 468
    [16]
    Cheng N Y et al 2015 Chem. Commun. 51 1616
    [17]
    Wu T X et al 2019 Chem. Commun. 55 2344
    [18]
    Chen Y Y et al 2019 J. Electrochem. Soc. 167 056501
    [19]
    Adusei P K et al 2020 J. Energy Chem. 40 120
    [20]
    Pereira J F S et al 2019 Electrochem. Commun. 105 106497
    [21]
    Liu T Q et al 2019 ACS Appl. Energy Mater. 2 5162
    [22]
    Dixon D et al 2016 J. Power Sources 332 240
    [23]
    Chang S H et al 2016 J. Power Sources 336 99
    [24]
    Naseh M V et al 2010 Carbon 48 1369
    [25]
    Gao M et al 2020 Surf. Coat. Technol. 404 126498
    [26]
    Lin J H et al 2018 J. Mater. Chem. A 6 908
    [27]
    Li L Q et al 2017 ACS Energy Lett. 2 294
    [28]
    Lu X Y et al 2015 J. Am. Chem. Soc. 137 2901
    [29]
    Ren C L et al 2020 J. Colloid Interface Sci. 569 298
    [30]
    Gao M et al 2019 Nanomaterials 9 568
    [31]
    Chien H H et al 2018 Electrochim. Acta 260 391
    [32]
    Dutta A and Pradhan N 2017 J. Phys. Chem. Lett. 8 144
    [33]
    Bajdich M et al 2013 J. Am. Chem. Soc. 135 13521
    [34]
    Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Sci.Rep. 5 13801
    [35]
    Ge R X et al 2019 Adv. Energy Mater. 9 1901313
    [36]
    Wu A P et al 2018 Nano Energy 44 353
    [37]
    McCrory C C L et al 2015 J. Am. Chem. Soc. 137 4347
    [38]
    Meng J et al 2018 ACS Appl. Mater. Interfaces 10 13652
    [39]
    Zhao Y et al 2013 Nat. Commun. 4 2390
    [40]
    Qin J J et al 2020 Compos. Sci. Technol. 195 108198
    [41]
    Zhou J H et al 2017 Int. J. Hydrog. Energy 42 27004
  • Related Articles

    [1]Weigang CHEN (陈卫刚), Haixia WU (武海霞), Jiawei FAN (樊佳炜), Zhi FANG (方志), Shaohua LIN (林少华). Activated persulfate by DBD plasma and activated carbon for the degradation of acid orange II[J]. Plasma Science and Technology, 2020, 22(3): 34009-034009. DOI: 10.1088/2058-6272/ab5f34
    [2]Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
    [3]Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4
    [4]Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501
    [5]LI Hongtao (李洪涛), KAN Jinfeng (阚金峰), JIANG Bailing (蒋百灵), LIU Yanjie (刘燕婕), LIU Zheng (刘政). Study of the Deburring Process for Low Carbon Steel by Plasma Electrolytic Oxidation[J]. Plasma Science and Technology, 2016, 18(8): 860-864. DOI: 10.1088/1009-0630/18/8/12
    [6]WANG Huijuan (王慧娟), GUO He (郭贺), LIU Yongjie (刘永杰), YI Chengwu (依成武). Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas[J]. Plasma Science and Technology, 2015, 17(10): 881-886. DOI: 10.1088/1009-0630/17/10/12
    [7]GU Ling(古玲). Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid[J]. Plasma Science and Technology, 2014, 16(3): 223-225. DOI: 10.1088/1009-0630/16/3/09
    [8]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [9]JI Puhui (吉普辉), QU Guangzhou (屈广周), LI Jie (李杰). Effects of Dielectric Barrier Discharge Plasma Treatment on Pentachlorophenol Removal of Granular Activated Carbon[J]. Plasma Science and Technology, 2013, 15(10): 1059-1065. DOI: 10.1088/1009-0630/15/10/18
    [10]Jeong Woo YUN. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials[J]. Plasma Science and Technology, 2013, 15(6): 521-527. DOI: 10.1088/1009-0630/15/6/07
  • Cited by

    Periodical cited type(11)

    1. Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643
    2. Liu, Z.-B., Wang, X.-C., Zhang, Y.-T. Numerical Study on Kinetic Effects of Driving Frequency in Atmospheric Radio Frequency Discharges Using Deep Neural Network. IEEE Transactions on Plasma Science, 2023, 51(5): 1212-1222. DOI:10.1109/TPS.2023.3267733
    3. Ai, F., Liu, Z.-B., Zhang, Y.-T. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning | [结合机器学习的大气压介质阻挡放电数值模拟研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(24): 245201. DOI:10.7498/aps.71.20221555
    4. Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Comparing Study on Formation of Large Discharge Currents in Atmospheric Pulse-Modulated Radio Frequency Discharges. IEEE Transactions on Plasma Science, 2022, 50(9): 2796-2804. DOI:10.1109/TPS.2022.3188019
    5. Wang, X., Gao, S., Zhang, Y. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium-oxygen admixtures. Plasma Science and Technology, 2022, 24(8): 085401. DOI:10.1088/2058-6272/ac67bf
    6. Gao, S.-H., Cheng, R.-G., Zhang, Y.-T. Numerical Study on Operation Optimization of Atmospheric Radio-Frequency Glow Discharges Modulated by Pulses. IEEE Transactions on Plasma Science, 2022, 50(3): 609-618. DOI:10.1109/TPS.2022.3147853
    7. Gao, S.-H., Wang, X.-L., Zhang, Y.-T. Modeling study on the enhancement of atmospheric pulse-modulated radio-frequency discharge assisted by pulsed voltage. Physics of Plasmas, 2021, 28(11): 0061546. DOI:10.1063/5.0061546
    8. ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688
    9. Wang, X.-L., Gao, S.-H., Zhang, Y.-T. Numerical study on optimization of atmospheric pulse-modulated radio frequency discharges in the very high frequency range. Physics of Plasmas, 2021, 28(7): 073511. DOI:10.1063/5.0048966
    10. Shen, J., Cheng, C., Xu, Z. et al. Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_1
    11. Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers | [脉冲调制条件下介质阻挡特高频放电特性的数值模拟]. Wuli Xuebao/Acta Physica Sinica, 2020, 69(11): 115204. DOI:10.7498/aps.69.20191853

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (231) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return