Advanced Search+
Mamat Ali BAKE, Arzigul ELAJI. Photon and positron production by ultrahigh-intensity laser interaction with various plasma foils[J]. Plasma Science and Technology, 2021, 23(4): 45001-045001. DOI: 10.1088/2058-6272/abeb04
Citation: Mamat Ali BAKE, Arzigul ELAJI. Photon and positron production by ultrahigh-intensity laser interaction with various plasma foils[J]. Plasma Science and Technology, 2021, 23(4): 45001-045001. DOI: 10.1088/2058-6272/abeb04

Photon and positron production by ultrahigh-intensity laser interaction with various plasma foils

More Information
  • Received Date: December 14, 2020
  • Revised Date: February 27, 2021
  • Accepted Date: February 29, 2020
  • The generation of γ photons and positrons using an ultrahigh-intensity laser pulse interacting with various plasma solid foils is investigated with a series of quantum electrodynamic particle-in-cell (PIC) simulations. When ultrahigh-intensity lasers interact with plasma foils, a large amount of the laser energy is converted into γ photon energy. The simulation results indicate that for a fixed laser intensity with different foil densities, the conversion efficiency of the laser to γ photons and the number of produced photons are highly related to the foil density. We determine the optimal foil density by PIC simulations for high conversion efficiencies as approximately 250 times the critical plasma density, and this result agrees very well with our theoretical assumptions. Four different foil thicknesses are simulated and the effects of foil thickness on γ photon emission and positron production are discussed. The results indicate that optimal foil thickness plays an important role in obtaining the desired γ photon and positron production according to the foil density and laser intensity. Further, a relation between the laser intensity and conversion efficiency is present for the optimal foil density and thickness.
  • [1]
    Danson C et al 2015 High Power Laser Sci. Eng. 3 e3
    [2]
    Turcu I C E et al 2016 Rom. Rep. Phys. 68 S145 (www.eli-np.ro/scientific-papers/S145.pdf)
    [3]
    Mourou G et al 2013 Nat. Photonics 7 258
    [4]
    Papadopoulos D N et al 2016 High Power Laser Sci. Eng. 4 E34
    [5]
    Ehlotzky F et al 2009 Rep. Prog. Phys. 72 046401
    [6]
    Di Piazza A et al 2012 Rev. Mod. Phys. 84 1177
    [7]
    Gonoskov A A et al 2013 Phys. Rev. Lett. 111 060404
    [8]
    Lei B F et al 2018 Phys. Rev. Lett. 120 134801
    [9]
    Zhu X L et al 2016 Nat. Commun. 7 13686
    [10]
    Benedetti A et al 2018 Nat. Photonics 12 319
    [11]
    Tamburini M et al 2017 Sci. Rep. 7 5694
    [12]
    Gales S et al 2016 Phys. Scripta 91 093004
    [13]
    Liang E 2013 High Energy Density Phys. 9 425
    [14]
    Chen P and Mourou G 2017 Phys. Rev. Lett. 118 045001
    [15]
    Glinec Y et al 2005 Phys. Rev. Lett. 94 025003
    [16]
    Yoon D K et al 2014 Appl. Phys. Lett. 104 083521
    [17]
    Wu Y C et al 2011 Phys. Rev. B 84 064123
    [18]
    Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
    [19]
    Ridgers C P et al 2013 Phys. Plasmas 20 056701
    [20]
    Ridgers C P et al 2012 Phys. Rev. Lett. 108 165006
    [21]
    Danielson J R et al 2015 Rev. Mod. Phys. 87 247
    [22]
    Grismayer T et al 2017 Phys. Rev. E 95 023210
    [23]
    Tang S et al 2014 Phys. Rev. A 89 022105
    [24]
    Augustin S and Müller C 2012 Phys. Rev. A 88 22109
    [25]
    Krajewska K and Kamiński J Z 2012 Phys. Rev. A 86 052104
    [26]
    Shen B F and Meyer-ter-Vehn J 2001 Phys. Rev. E 65 016405
    [27]
    Hu H Y, Müller C and Keitel C H 2010 Phys. Rev. Lett. 105 80401
    [28]
    Ilderton A 2011 Phys. Rev. Lett. 106 020404
    [29]
    Bake M A et al 2018 Front. Phys. 13 135202
    [30]
    Bake M A et al 2020 Plasma Sci. Technol. 22 105201
    [31]
    Wan F et al 2017 Plasma Sci. Technol. 19 075201
    [32]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [33]
    Wang X M et al 2013 Nat. Commun. 4 1988
    [34]
    Bake M A et al 2016 Phys. Plasmas 23 083107
    [35]
    Lei A L et al 2009 Phys. Plasmas 16 020702
    [36]
    Lv C et al 2017 Plasma Phys. Control. Fusion 59 025006
    [37]
    Bartal T et al 2012 Nat. Phys. 8 139
    [38]
    Ji L L et al 2014 Phys. Plasmas 21 023109
    [39]
    Jirka M et al 2017 Sci. Rep. 7 15302
  • Related Articles

    [1]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [2]Kun CHEN (陈坤), Chao CHANG (常超), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮). Microwave frequency downshift in the time-varying collision plasma[J]. Plasma Science and Technology, 2020, 22(2): 25501-025501. DOI: 10.1088/2058-6272/ab50c6
    [3]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [4]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [5]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [6]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [7]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [8]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [9]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [10]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
  • Cited by

    Periodical cited type(2)

    1. Andreev, N.E., Umarov, I.R., Popov, V.S. Bright Sources of Ultrarelativistic Particles and Gamma Rays for Interdisciplinary Research. Bulletin of the Lebedev Physics Institute, 2023. DOI:10.3103/S1068335623190028
    2. Elaji, A., Bake, M.A., Tang, S. et al. Bright attosecond polarized γ-ray emission from the interaction of an intense laser pulse with non-uniform near-critical-density plasma. Chinese Journal of Physics, 2022. DOI:10.1016/j.cjph.2022.05.001

    Other cited types(0)

Catalog

    Article views (135) PDF downloads (293) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return