Citation: | Hesen YANG (杨鹤森), Hua LIANG (梁华), Guangyin ZHAO (赵光银), Bo WANG (王博), Shengwu ZHANG (张圣武), Weiliang KONG (孔维良). Experimental study on dynamic stall control based on AC-DBD actuation[J]. Plasma Science and Technology, 2021, 23(11): 115502. DOI: 10.1088/2058-6272/ac1395 |
[1] |
Carr L W 1988 J. Aircraft 25 6
|
[2] |
Zhang X G 2019 Proc. 2018 Asia-Pacific Int. Symp. on Aerospace Technology (APISAT 2018) (Singapore: Springer)
|
[3] |
Khalifa N M, Rezaei A S and Taha H E 2021 Comparing the performance of different turbulence models in predicting dynamic stall AIAA Scitech 2021 Forum (2021) 1651
|
[4] |
Raul V V and Leifsson L T 2021 Aerodynamic shape optimization for delaying dynamic stall of airfoils using cokriging regression AIAA Scitech 2021 Forum (2021) 0340
|
[5] |
Hammer P R, Garmann D J and Visbal M 2021 Aspect ratio effect on finite wing dynamic stall AIAA Scitech 2021 Forum (2021) 1089
|
[6] |
Patterson R P and Friedmann P P 2021 Vibration reduction on helicopter rotors using open loop flow control AIAA Scitech 2021 Forum (2021) 0089
|
[7] |
Ullah J et al 2021 Active gust load alleviation by combined actuation of trailing edge and leading edge flap at transonic speeds AIAA Scitech 2021 Forum (2021) 1831
|
[8] |
Yang H S, Liang H and Zhao G Y 2021 Proc. Inst. Mech. Eng.Part I J. Syst. Control Eng. 235 563
|
[9] |
Yang H S et al 2020 Chin. Phys. B 29 105203
|
[10] |
Cai J S et al 2017 Exp. Fluids 58 102
|
[11] |
Abdollahzadeh M et al 2015 Aerosp. Sci. Technol. 41 259
|
[12] |
Yu H C and Zheng J G 2020 Phys. Fluids 32 035103
|
[13] |
Mitsuo K et al 2013 Lift enhancement of a pitching airfoil in dynamic stall by DBD plasma actuators Proc. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Grapevine(AIAA) 2013) 1119
|
[14] |
Lombardi A J, Bowles P O and Corke T C 2013 AIAA J.51 1130
|
[15] |
Sekimoto S et al 2018 Experimental analysis of burst actuation for separation control around a pitching NACA0015 airfoil using a DBD plasma actuator at low Reynolds number Proc.2018 AIAA Aerospace Sciences Meeting (Kissimmee(AIAA)2018) 1551
|
[16] |
Wojewodka M M, White C and Kontis K 2020 Sens. Actuators A Phys. 303 111831
|
[17] |
Goulos I and Bonesso M 2019 Aerosp. Sci. Technol. 88 444
|
[18] |
Mahdavi H et al 2020 Phys. Plasmas 27 083514
|
[19] |
Feng R et al 2020 Aerosp. Sci. Technol. 99 105752
|
[20] |
Chandrasekhara M S, Martin P B and Tung C 2004 J. Aircraft 41 862
|
[21] |
Wen H X and Su J F 2012 Adv. Mater. Res. 411 42
|
[22] |
Gharali K and Johnson D A 2014 Exp. Fluids 55 1803
|
[23] |
Martin J M et al 1974 J. Amer. Helicopter Soc. 19 26
|
[24] |
Choudhry A et al 2014 Exp. Therm. Fluid Sci. 58 188
|
[25] |
Carta F O 1967 J. Amer. Helicopter Soc. 12 1
|
[26] |
Roy N and Ganguli R 2005 J. Sound Vib. 283 821
|
[27] |
Corke T and Post M 2005 Overview of plasma flow control:concepts, optimization, and applications Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibit (Reno(AIAA) 2005) 563
|
[28] |
Yambe K et al 2017 Phys. Plasmas 24 063512
|
[29] |
Li Y H and Wu Y 2020 Sci. Sin. Technol. 50 1252
|
[30] |
Zheng J G et al 2018 AIAA J. 56 2220
|
[31] |
Yang H S et al 2020 Acta Aeronaut. Astronaut. Sin. 41 23605 (in Chinese)
|
[32] |
Rethmel C et al 2011 Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators Proc.49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando(AIAA) 2011) 487
|
[33] |
Zhao G Y et al 2015 Chin. J. Aeronaut. 28 368
|
[34] |
Wang Y D et al 2017 J. Air Force Eng. Univ. (Nat. Sci. Ed.) 18 1 (in Chinese)
|
[35] |
Fukumoto H et al 2016 Int. J. Heat Fluid Flow 62 10
|
[36] |
Fukumoto H et al 2018 Large-eddy simulations of flow control effects of a DBD plasma actuator at various burst frequencies on a dynamic flowfield around a pitching NACA0012 airfoil at reynolds number of 256,000 Proc. 2018 AIAA Aerospace Sciences Meeting (Kissimmee(AIAA) 2018)
|
[37] |
Ferreira C S, Van Bussel G and Van Kuik G 2007 2D CFD simulation of dynamic stall on a vertical axis wind turbine:verification and validation with PIV measurements Proc.45th AIAA Aerospace Sciences Meeting and Exhibit (Reston (AIAA) 2007)
|
[38] |
Jiang J, Yang A M and Weng P F 2008 J. Shanghai Univ. (Nat.Sci.) 14 405 (in Chinese)
|
[39] |
Zhao G Y et al 2015 Exp. Fluids 56 1864
|
[40] |
Starikovskiy A et al 2019 Plasma Sources Sci. Technol. 28 054001
|
[41] |
Singhal A et al 2018 AIAA J. 56 78
|
[42] |
Singhal A et al 2017 Unsteady flow separation control over a NACA 0015 using NS-DBD plasma actuators Proc. 55th AIAA Aerospace Sciences Meeting (Grapevine(AIAA) 2017) 1687
|
[43] |
Whiting N L et al 2020 Control of dynamic stall over a NACA 0012 airfoil using NS-DBD plasma actuators Proc. AIAA Scitech 2020 Forum (Orlando(AIAA) 2020) 1568
|
[44] |
Clifford C, Singhal A and Samimy M 2016 AIAA J. 54 141
|
[45] |
Chandrasekhara M S and Carr L W 1995 Compressibility effects on dynamic stall of oscillating airfoils AGARD CP-552
|
[46] |
Visbal M R and Garmann D J 2018 AIAA J. 56 46
|
[1] | Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e |
[2] | Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef |
[3] | Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358 |
[4] | Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0 |
[5] | Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765 |
[6] | Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e |
[7] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07 |
[8] | ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01 |
[9] | GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02 |
[10] | LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04 |
1. | Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1 |
2. | Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb |
3. | Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7 |
4. | Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718 |
5. | Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361 |
6. | Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f |
7. | Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596 |