Advanced Search+
Hui LI (李慧), Yanlin FU (付艳林), Jiquan LI (李继全), Zhengxiong WANG (王正汹). Machine learning of turbulent transport in fusion plasmas with neural network[J]. Plasma Science and Technology, 2021, 23(11): 115102. DOI: 10.1088/2058-6272/ac15ec
Citation: Hui LI (李慧), Yanlin FU (付艳林), Jiquan LI (李继全), Zhengxiong WANG (王正汹). Machine learning of turbulent transport in fusion plasmas with neural network[J]. Plasma Science and Technology, 2021, 23(11): 115102. DOI: 10.1088/2058-6272/ac15ec

Machine learning of turbulent transport in fusion plasmas with neural network

Funds: This work was supported by the National Key R&D Program of China (Nos. 2017YFE0301200 and 2017YFE0301201) and partially by National Natural Science Foundation of China (Nos. 11775069 and 11925501), the Fundamental Research Funds for the Central Universities (No. DUT21GJ205) as well as the Liao Ning Revitalization Talents Program (No. XLYC1802009).
More Information
  • Received Date: April 07, 2021
  • Revised Date: July 09, 2021
  • Accepted Date: July 18, 2021
  • Turbulent transport resulting from drift waves, typically, the ion temperature gradient (ITG) mode and trapped electron mode (TEM), is of great significance in magnetic confinement fusion. It is also well known that turbulence simulation is a challenging issue in both the complex physical model and huge CPU cost as well as long computation time. In this work, a credible turbulence transport prediction model, extended fluid code (ExFC-NN), based on a neural network (NN) approach is established using simulation data by performing an ExFC, in which multi-scale multi-mode fluctuations, such as ITG and TEM turbulence are involved. Results show that the characteristics of turbulent transport can be successfully predicted including the type of dominant turbulence and the radial averaged fluxes under any set of local gradient parameters. Furthermore, a global NN model can well reproduce the radial profiles of turbulence perturbation intensities and fluxes much faster than existing codes. A large number of comparative predictions show that the newly constructed NN model can realize rapid experimental analysis and provide reference data for experimental parameter design in the future.
  • [1]
    Wenninger R et al 2015 Nucl. Fusion 55 063003
    [2]
    ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137
    [3]
    Li J C, Dong J Q and Liu S F 2020 Plasma Sci. Technol. 22 055101
    [4]
    Buangam W et al 2020 Plasma Sci. Technol. 22 065101
    [5]
    Rhodes T L et al 2011 Nucl. Fusion 51 063022
    [6]
    Staebler G M, Kinsey J E and Waltz R E 2007 Phys. Plasmas 14 055909
    [7]
    Lin Z et al 2007 Phys. Rev. Lett. 99 265003
    [8]
    Dannert T and Jenko F 2005 Phys. Plasmas 12 072309
    [9]
    Han M K et al 2021 Nucl. Fusion 61 046010
    [10]
    Connor J W 1988 Plasma Phys. Control. Fusion 30 619
    [11]
    Allen L and Bishop C M 1992 Plasma Phys. Control. Fusion 34 1291
    [12]
    Wakasa A et al 2007 Jpn. J. Appl. Phys. 46 1157
    [13]
    Lister J B and Schnurrenberger H 1991 Nucl. Fusion 31 1291
    [14]
    Clayton D J et al 2013 Plasma Phys. Control. Fusion 55 095015
    [15]
    Svensson J, von Hellermann M and König R W T 1999 Plasma Phys. Control. Fusion 41 315
    [16]
    Wroblewski D, Jahns G L and Leuer J A 1997 Nucl. Fusion 37 725
    [17]
    Cannas B et al 2004 Nucl. Fusion 44 68
    [18]
    Vega J et al 2014 Nucl. Fusion 54 123001
    [19]
    Gaudio P et al 2014 Plasma Phys. Control. Fusion 56 114002
    [20]
    Meneghini O et al 2014 Phys. Plasmas 21 060702
    [21]
    Meneghini O et al 2017 Nucl. Fusion 57 086034
    [22]
    Pathak J et al 2018 Phys. Rev. Lett. 120 024102
    [23]
    Pathak J et al 2017 Chaos 27 121102
    [24]
    Lu Z X et al 2017 Chaos 27 041102
    [25]
    Citrin J et al 2015 Nucl. Fusion 55 092001
    [26]
    van de Plassche K L et al 2020 Phys. Plasmas 27 022310
    [27]
    Narita E et al 2019 Nucl. Fusion 59 106018
    [28]
    Hammett G W and Perkins F W 1990 Phys. Rev. Lett. 64 3019
    [29]
    Weiland J and Zagorodny A G 2011 AIP Conf. Proc. 1392 33
    [30]
    Li J et al 2020 Proc. 28th IAEA Fusion Energy Conference (FEC) TH/P7-21
    [31]
    Li H et al 2021 Nucl. Fusion Unpublished
    [32]
    LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
    [33]
    Silver D et al 2016 Nature 529 484
    [34]
    Fu Y L et al 2020 Chem. Sci. 11 2148
    [35]
    Hornik K, Stinchcombe M and White H 1989 Neural Netw.2 359
    [36]
    Haykin S 1998 Neural Networks: A Comprehensive Foundation 2nd edn (Englewood Cliffs, NJ: Prentice Hall)
    [37]
    Fu Y L et al 2021 J. Chem. Phys. 154 024302
    [38]
    Hagan M T and Menhaj M B 1994 IEEE Trans. Neural Netw.5 989
    [39]
    Raff L M et al 2012 Neural Networks in Chemical Reaction Dynamics (Oxford: Oxford University Press)
    [40]
    Dimits A M et al 2000 Nucl. Fusion 40 661
  • Related Articles

    [1]Xueyun WANG (王雪韵), Zhenyu ZHOU (周振宇), Zhuoyi LI (李卓懿), Bo LI (李博). Dynamical evolution of cross phase of edge fluctuations and transport bifurcation[J]. Plasma Science and Technology, 2021, 23(4): 45102-045102. DOI: 10.1088/2058-6272/abea6f
    [2]Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), N A STROKIN, A N STUPIN. Study on plasma sheath and plasma transport properties in the azimuthator[J]. Plasma Science and Technology, 2018, 20(4): 45501-045501. DOI: 10.1088/2058-6272/aaa754
    [3]NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09
    [4]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20
    [7]SUN Aiping (孙爱萍), DONG Jiaqi (董家齐), CUI Zhengying (崔正英). Transport Simulation of ECRH H-Mode Experiments on HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(2): 105-108. DOI: 10.1088/1009-0630/17/2/03
    [8]GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05
    [9]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [10]DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01
  • Cited by

    Periodical cited type(21)

    1. Pan, J., Qiao, X., Zhang, C. et al. Stacking Ensemble Learning-Assisted Simulation of Plasma-Catalyzed CO2 Reforming of Methane. Electronics (Switzerland), 2025, 14(7): 1329. DOI:10.3390/electronics14071329
    2. Liu, S., Ren, Z., Wang, W. et al. The instability prediction of non-resonant energetic particle modes based on machine learning algorithms. Physica Scripta, 2025, 100(3): 036007. DOI:10.1088/1402-4896/adafe4
    3. Yan, X.-T., Bao, N.-N., Zhao, C.-Y. et al. NTVTOK-ML: Fast surrogate model for neoclassical toroidal viscosity torque calculation in tokamaks based on machine learning methods. Computer Physics Communications, 2025. DOI:10.1016/j.cpc.2024.109413
    4. Li, H., Wang, L., Fu, Y.L. et al. Surrogate model of turbulent transport in fusion plasmas using machine learning. Nuclear Fusion, 2025, 65(1): 016015. DOI:10.1088/1741-4326/ad8b5b
    5. Liu, Z.Y., Qiu, H.R., Fu, G.Y. et al. Prediction of fishbone linear instability in tokamaks with machine learning methods. Nuclear Fusion, 2025, 65(1): 016007. DOI:10.1088/1741-4326/ad8d69
    6. Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910
    7. Zheng, G.H., Yang, Z.Y., Liu, S.F. et al. Real-time equilibrium reconstruction by multi-task learning neural network based on HL-3 tokamak. Nuclear Fusion, 2024, 64(12): 126041. DOI:10.1088/1741-4326/ad8014
    8. Zhang, H., Zhou, L., Liu, Y. et al. Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad-Shafranov solutions across multiple tokamaks. Plasma Science and Technology, 2024, 26(5): 055101. DOI:10.1088/2058-6272/ad13e3
    9. Li, G., Li, L., Qiao, X. et al. Research on Machine Learning-Assisted Pulse Discharge Plasma Catalysis for Methane-Carbon Dioxide Simulation. 2024. DOI:10.1109/ICCSNT62291.2024.10776678
    10. Liu, Y., Li, J. Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport. Plasma Science and Technology, 2024, 26(1): 015101. DOI:10.1088/2058-6272/ad0c9b
    11. Li, H., Fu, Y.-L., Li, J.-Q. et al. Simulation Prediction of Heat Transport with Machine Learning in Tokamak Plasmas. Chinese Physics Letters, 2023, 40(12): 125201. DOI:10.1088/0256-307X/40/12/125201
    12. Li, H., Li, J.-Q., Wang, Z.-X. Global Effects on Drift Wave Microturbulence in Tokamak Plasmas. Chinese Physics Letters, 2023, 40(10): 105201. DOI:10.1088/0256-307X/40/10/105201
    13. Wang, Z., Qiu, Z., Wang, L. et al. Summary of the 10th Conference on Magnetically Confined Fusion Theory and Simulation (CMCFTS). Plasma Science and Technology, 2023, 25(8): 081001. DOI:10.1088/2058-6272/acc14d
    14. Liang, C., Huang, D., Lu, S. et al. Determining global property of dusty plasma from single particle dynamics using machine learning. Physical Review Research, 2023, 5(3): 033086. DOI:10.1103/PhysRevResearch.5.033086
    15. Pan, J., Liu, Y., Zhang, S. et al. Deep learning-assisted pulsed discharge plasma catalysis modeling. Energy Conversion and Management, 2023. DOI:10.1016/j.enconman.2022.116620
    16. Zheng, W., Xue, F., Shen, C. et al. Overview of machine learning applications in fusion plasma experiments on J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124003. DOI:10.1088/2058-6272/ac9e46
    17. Wai, J.T., Boyer, M.D., Kolemen, E. Neural net modeling of equilibria in NSTX-U. Nuclear Fusion, 2022, 62(8): 086042. DOI:10.1088/1741-4326/ac77e6
    18. Wang, T., Li, B., Gao, J. et al. Monitoring of two-dimensional tungsten concentration profiles on the HL-2A tokamak. Plasma Physics and Controlled Fusion, 2022, 64(8): 084003. DOI:10.1088/1361-6587/ac77b9
    19. Yang, Y.R., Fu, S.H., Ding, Z.F. Effects of ion extraction on discharges in gridded ion source. AIP Advances, 2022, 12(5): 055325. DOI:10.1063/5.0082813
    20. Ida, K., McDermott, R.M., Holland, C. et al. Joint meeting of 9th Asia Pacific-Transport Working Group (APTWG) & EU-US Transport Task Force (TTF) workshop. Nuclear Fusion, 2022, 62(3): 037001. DOI:10.1088/1741-4326/ac3f19
    21. Li, H., Li, J.Q., Fu, Y.L. et al. Simulation prediction of micro-instability transition and associated particle transport in tokamak plasmas. Nuclear Fusion, 2022, 62(3): 036014. DOI:10.1088/1741-4326/ac486b

    Other cited types(0)

Catalog

    Article views (176) PDF downloads (302) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return