Advanced Search+
Wei LUO (罗伟), Jianwei ZHANG (张建威), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮), Pengfei ZHANG (张鹏飞), Fan GUO (郭帆). Investigation on current loss of high-power vacuum transmission lines with coaxial-disk transitions by particle-in-cell simulations[J]. Plasma Science and Technology, 2021, 23(11): 115601. DOI: 10.1088/2058-6272/ac17e5
Citation: Wei LUO (罗伟), Jianwei ZHANG (张建威), Yongdong LI (李永东), Hongguang WANG (王洪广), Chunliang LIU (刘纯亮), Pengfei ZHANG (张鹏飞), Fan GUO (郭帆). Investigation on current loss of high-power vacuum transmission lines with coaxial-disk transitions by particle-in-cell simulations[J]. Plasma Science and Technology, 2021, 23(11): 115601. DOI: 10.1088/2058-6272/ac17e5

Investigation on current loss of high-power vacuum transmission lines with coaxial-disk transitions by particle-in-cell simulations

Funds: This work was supported by National Natural Science Foundation of China (Nos. U1530133 and 52007152), the Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (No. SKLIPR2005) and the Youth Innovation Team of Shaanxi Universities.
More Information
  • Received Date: January 11, 2021
  • Revised Date: July 21, 2021
  • Accepted Date: July 25, 2021
  • Coaxial-disk transitions can generate non-uniform magnetic fields and abrupt impedance variations in magnetically insulated transmission lines (MITLs), resulting in disturbed electron flow and non-negligible current loss. In this paper, 3D particle-in-cell simulations are conducted with UNPIC-3d to investigate the current loss mechanism and the influence of the input parameters of the coaxial-disk transition on current loss in an MITL system. The results reveal that the magnetic field non-uniformity causes major current loss in the MITL after the coaxialdisk transition, and the non-uniformity decreases with the distance away from the transition. The uniformity of the magnetic field is improved when increasing the number of feed lines of a linear transformer driver-based accelerator with coaxial-disk transitions. The number of input feed lines should be no less than four in the azimuthal distribution to obtain acceptable uniformity of the magnetic field. To make the ratio of the current loss to the total current of the accelerator less than 2% at peak anode current, the ratio of the current in each feed line to the total current should be no less than 8%.
  • [1]
    Ruiz C L et al 2004 Phys. Rev. Lett. 93 015001
    [2]
    Gomez M R et al 2017 Phys. Rev. Accel. Beams 20 010401
    [3]
    Zou W K et al 2014 Phys. Rev. Accel. Beams 17 110401
    [4]
    Van Devender J P et al 2015 Phys. Rev. Accel. Beams 18 030401
    [5]
    Leckbee J J et al 2006 IEEE Trans. Plasma Sci. 34 1888
    [6]
    Mazarakis M G and Olson C L 2005 A new high current fast 100 ns LTD based driver for Z-pinch IFE at Sandia Proc.21st IEEE/NPS Symp. on Fusion Engineering SOFE 05 (Knoxville) (IEEE) 1–4
    [7]
    Langston W L and Pointon T D 2007 Reduction of electron flow current and localized anode energy deposition in transitions from coaxial feeds to a disk Proc. 2007 IEEE 34th Int. Conf. on Plasma Science (Albuquerque) (IEEE) 640–640
    [8]
    Zhou L et al 2016 Phys. Rev. Accel. Beams 19 030401
    [9]
    Chen L et al 2019 Phys. Rev. Accel. Beams 22 030401
    [10]
    Olson C L et al 2007 Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield Sandia Nat.Lab., Albuquerque, NM, Tech. Rep. SAND2007-0059
    [11]
    Zhang P F et al 2016 IEEE Trans. Plasma Sci. 44 1902
    [12]
    Luo W et al 2019 J. Appl. Phys. 125 163302
    [13]
    Mazarakis M G et al 1995 Design and code validation of the Jupiter inductive voltage adder (IVA) PRS driver Digest of Technical Papers. Tenth IEEE Int. Pulsed Power Conf.(Albuquerque) (IEEE) 528–33
    [14]
    Grabovski E V et al 2016 Plasma Phys. Rep. 42 773
    [15]
    Zou W K et al 2018 IEEE Trans. Plasma Sci. 46 1913
    [16]
    Wang J G et al 2010 Phys. Plasmas 17 073107
    [17]
    Rose D V et al 2015 Phys. Rev. ST Accel. Beams 18 030402
  • Related Articles

    [1]Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358
    [4]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [5]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [6]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [10]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
  • Cited by

    Periodical cited type(7)

    1. Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1
    2. Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb
    3. Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7
    4. Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718
    5. Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361
    6. Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f
    7. Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596

    Other cited types(0)

Catalog

    Article views (123) PDF downloads (116) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return