Processing math: 100%
Advanced Search+
Hongyu ZHOU (周泓宇), Yan YIN (银燕), Kaiqiang PAN (潘凯强), Chengzhuo XIAO (肖成卓), Jinlong JIAO (矫金龙), Duan XIE (谢端), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌). Investigation of stimulated Raman scattering in longitudinal magnetized plasma by theory and kinetic simulation[J]. Plasma Science and Technology, 2021, 23(11): 115201. DOI: 10.1088/2058-6272/ac2122
Citation: Hongyu ZHOU (周泓宇), Yan YIN (银燕), Kaiqiang PAN (潘凯强), Chengzhuo XIAO (肖成卓), Jinlong JIAO (矫金龙), Duan XIE (谢端), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌). Investigation of stimulated Raman scattering in longitudinal magnetized plasma by theory and kinetic simulation[J]. Plasma Science and Technology, 2021, 23(11): 115201. DOI: 10.1088/2058-6272/ac2122

Investigation of stimulated Raman scattering in longitudinal magnetized plasma by theory and kinetic simulation

Funds: This work is supported by the National Key Research and Development Program of China (No. 2016YFA0401100), the Strategic Priority Re-search Program of Chinese Academy of Sciences (No. XDA25050700), the Scientific Research Foundation of Hunan Provincial Education Department (No. 20A042), and National Natural Science Foundation of China (Nos. 11805062, 11675264, 11774430).
More Information
  • Received Date: May 22, 2021
  • Revised Date: August 22, 2021
  • Accepted Date: August 24, 2021
  • Stimulated Raman scattering (SRS) in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation. The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density, electron temperature, and magnetic field intensity. One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of ωc/ω0<0.01. There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics. In a relatively low-density plasma (ne0.20nc), the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS. While in the plasma whose density is near the cut-off point (ne0.23nc), the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves. It has been observed in simulations and verified by theoretical analysis. Due to this effect, the onset of reflectivity delays, and the plasma waves form high-frequency oscillation and periodic envelope structure. The split wavenumber Δk/k0 is proportional to the magnetic field intensity and plasma density. These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.
  • [1]
    Craxton R S et al 2015 Phys. Plasmas 22 110501
    [2]
    Miller G H, Moses E I and Wuest C R 2004 Nucl. Fusion 44 S228
    [3]
    Lindl J D et al 2004 Phys. Plasmas 11 339
    [4]
    Montgomery D S 2016 Phys. Plasmas 23 055601
    [5]
    Lindl J 1995 Phys. Plasmas 2 3933
    [6]
    Divol L et al 2008 Phys. Rev. Lett. 100 255001
    [7]
    Forslund D W, Kindel J M and Lindman E L 1975 Phys.Fluids 18 1002
    [8]
    Myatt J F et al 2014 Phys. Plasmas 21 055501
    [9]
    Hinkel D E et al 2011 Phys. Plasmas 18 056312
    [10]
    Winjum B J et al 2013 Phys. Rev. Lett. 110 165001
    [11]
    Liu Z J et al 2017 Phys. Plasmas 24 082704
    [12]
    Rosenberg M J et al 2020 Phys. Plasmas 27 042705
    [13]
    Winjum B J, Tsung F S and Mori W B 2018 Phys. Rev. E 98 043208
    [14]
    Zhao Y et al 2015 Phys. Plasmas 22 052119
    [15]
    Rothenberg J E 2000 J. Appl. Phys. 87 3654
    [16]
    Barth I and Fisch N J 2016 Phys. Plasmas 23 102106
    [17]
    Zhou H Y et al 2019 Plasma Phys. Control. Fusion 61 105004
    [18]
    Paknezhad A and Dorranian D 2011 Laser Part. Beams 29 373
    [19]
    Ghaffari-Oskooei S S and Aghamir F M 2017 Phys. Plasmas 24 063101
    [20]
    Grebogi C and Liu C S 1980 Phys. Fluids 23 1330
    [21]
    Salimullah M, Liu Y G and Haines M G 1984 Phys. Rev. A 30 3235
    [22]
    Kaur S and Sharma A K 2011 Phys. Plasmas 18 092105
    [23]
    Liu Z J et al 2018 Plasma Phys. Control. Fusion 60 045008
    [24]
    Pan K Q et al 2019 Phys. Plasmas 26 012108
    [25]
    Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
    [26]
    Michel D T et al 2010 Phys. Rev. Lett. 104 255001
  • Related Articles

    [1]Feiyue MAO, Nengchao WANG, Zhuo HUANG, Zhengkang REN, Song ZHOU, Chengshuo SHEN, Xiaoyi ZHANG, Ying HE, Qi ZHANG, Ruo JIA, Chuanxu ZHAO, Yangbo LI, Bo HU, Da LI, Abba Alhaji BALA, Zhipeng CHEN, Zhongyong CHEN, Zhoujun YANG, Yunfeng LIANG, Yonghua DING, Yuan PAN, J-TEXT Team. Study of the spectrum effect on the threshold of resonant magnetic perturbation penetration on J-TEXT[J]. Plasma Science and Technology, 2022, 24(12): 124002. DOI: 10.1088/2058-6272/ac9f2e
    [2]Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef
    [3]Alexander LYSENKO, Iurii VOLK. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation[J]. Plasma Science and Technology, 2018, 20(3): 35002-035002. DOI: 10.1088/2058-6272/aaa358
    [4]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [5]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [6]Neda SHAMSIAN, Babak SHIRANI BIDABADI, Hosein PIRJAMADI. Development of a radiographic method for measuring the discrete spectrum of the electron beam from a plasma focus device[J]. Plasma Science and Technology, 2017, 19(7): 75101-075101. DOI: 10.1088/2058-6272/aa632e
    [7]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [8]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [9]GAO Min (高敏), CHEN Shaoyong (陈少永), TANG Changjian (唐昌建). Electron Cyclotron Harmonic Wave Heating in Tokamak Plasmas with Different Polarization Modes[J]. Plasma Science and Technology, 2013, 15(4): 313-317. DOI: 10.1088/1009-0630/15/4/02
    [10]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04

Catalog

    Article views (157) PDF downloads (236) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return