Citation: | Dong Hwan KIM, Jeong Eun CHOI, Sang Jeen HONG. Analysis of optical emission spectroscopy data during silicon etching in SF6/O2/Ar plasma[J]. Plasma Science and Technology, 2021, 23(12): 125501. DOI: 10.1088/2058-6272/ac24f4 |
[1] |
Tinck S and Bogaerts A 2016 J. Phys. D: Appl. Phys. 49 195203
|
[2] |
Kaler S S et al 2016 J. Vac. Sci. Technol. A 34 041301
|
[3] |
Lee B J et al 2019 Plasma Chem. Plasma Process. 39 339
|
[4] |
Park J M et al 2015 20nm DRAM: A new beginning of another revolution 2015 IEEE Int. Electron Devices Meeting (IEDM) (Washington, DC, USA) (IEEE)
|
[5] |
Tang Y J et al 2017 A smart microfluidic system integrated with pressure sensors and flow sensor based on electrochemical impedance methods 2017 IEEE 30th Int.Conf. on Micro Electro Mechanical Systems (MEMS) (Las Vegas, Nevada, USA) (IEEE)
|
[6] |
Kawano M, Wang X Y and Ren Q 2020 Trench isolation technology for cost-effective wafer-level 3D integration with one-step TSV 2020 IEEE 70th Electronic Components and Technology Conf. (ECTC) (Orlando, Florida, USA) (IEEE)
|
[7] |
Miakonkikh A V, Averkin S N and Rudenko K V 2019 J. Phys.: Conf. Ser. 1243 012009
|
[8] |
Shin S, Yoon G and Choi W Y 2019 J. Semicond. Technol. Sci.19 208
|
[9] |
Xu Q et al 2015 Enhanced etch process for TSV & deep silicon etch 2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conf. (ASMC) (Saratoga Springs, NY,USA) (IEEE)
|
[10] |
Chang R Y, Zhang Y Y and Zhang H Y 2017 A study of silicon etch process in memory process 2017 China Semiconductor Technology Int. Conf. (CSTIC) (Shanghai,China) (IEEE)
|
[11] |
Mori M et al 2019 J. Vac. Sci. Technol. A 37 051301
|
[12] |
Zhang Y T et al 2017 J. Vac. Sci. Technol. A 35 021303
|
[13] |
Devyatko Y N and Fadeev A V 2017 Plasma Phys. Rep.43 838
|
[14] |
Ishikawa K et al 2018 Jpn. J. Appl. Phys. 57 06JA01
|
[15] |
Mui D S L et al 2011 IEEE Trans. Semicond. Manuf. 24 552
|
[16] |
Ishchuk V et al 2012 J. Appl. Phys. 112 084308
|
[17] |
Duras J et al 2017 J. Appl. Phys. 83 595830107
|
[18] |
Donkó Z et al 2018 Plasma Sources Sci. Technol. 27 104008
|
[19] |
Rudenko M K et al 2019 Russ. Microelectron. 48 157
|
[20] |
Martins R S et al 2016 J. Phys. D: Appl. Phys. 49 415205
|
[21] |
Kaupe J et al 2019 Plasma Sources Sci. Technol. 28 065012
|
[22] |
Abdirakhmanov A R et al 2019 Int. J. Math. Phys. 10 53
|
[23] |
Miao H X et al 2016 J. Microelectromech. Syst. 25 963
|
[24] |
Haidar Y et al 2016 J. Vac. Sci. Technol. A 34 061306
|
[25] |
Shyam R et al 2020 Appl. Phys. A 126 1
|
[26] |
Han C F, Lin C C and Lin J F 2021 Precis. Eng. 71 141
|
[27] |
Salehi M et al 2021 Vakuum in Forschung und Praxis 33 40
|
[28] |
Evdokimov K E et al 2017 Resour. Effic. Technol. 3 187
|
[29] |
Yamashita Y et al 2019 Jpn. J. Appl. Phys. 58 016004
|
[30] |
Farzana R et al 2018 J. Clean. Prod. 188 371
|
[31] |
Shim K H et al 2012 Mater. Sci. Semicond. Process. 15 364
|
[32] |
Kechkar S et al 2017 Plasma Sources Sci. Technol. 26 065009
|
[33] |
Díaz‐Cabrera J M et al 2020 Plasma Process. Polym. 17 2000073
|
[34] |
Ni W, Song G and Liu D 2019 IOP Conf. Ser. Earth Environ.Sci. 242 022043
|
[35] |
Roh H J et al 2018 IEEE Trans. Semicond. Manuf. 31 232
|
[36] |
Osipov A A et al 2020 J. Phys.: Conf. Ser. 1679 022006
|
[37] |
Lee H C et al 2019 Appl. Phys. Lett. 115 064102
|
[38] |
Zhu X M et al 2008 J. Phys. D: Appl. Phys. 42 025203
|
[39] |
Alshaltami K A and Morshed M 2017 J. Vac. Sci. Technol. A 35 031307
|
[40] |
Saloum S et al 2018 Mater. Res. 21 e20171082
|
[41] |
Kang N, Oh S G and Ricard A 2008 J. Phys. D: Appl. Phys. 41 155203
|
[42] |
Akatsuka H 2019 Adv. Phys. X 4 1592707
|
[43] |
Pateau A et al 2014 J. Vac. Sci. Technol. A 32 021303
|
[44] |
Morshed M M and Daniels S M 2012 Plasma Sci. Technol.14 316
|
[45] |
Edelberg E A et al 1999 J. Vac. Sci. Technol. A 17 506
|
[46] |
Lee H C, Lee M H and Chung C W 2010 Appl. Phys. Lett. 96 071501
|
[47] |
Gomez S et al 2004 J. Vac. Sci. Technol. A 22 606
|
[1] | Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b |
[2] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[3] | Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d |
[4] | LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05 |
[5] | SUI Jiaxing (眭佳星), ZHANG Saiqian (张赛谦), LIU Zeng (刘增), YAN Jun (阎军), DAI Zhongling (戴忠玲). A Multi-Scale Study on Silicon-Oxide Etching Processes in C4F8/Ar Plasmas[J]. Plasma Science and Technology, 2016, 18(6): 666-673. DOI: 10.1088/1009-0630/18/6/14 |
[6] | Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11 |
[7] | KHURRAM Siraj, M. ZAKRIA Butt, M. Khaleeq-ur-Rahman, M. SHAHID Rafique, SAIMA Rafique, FAKHAR-UN-NISA.. Effect of Cumulative Nanosecond Laser Pulses on the Plasma Emission Intensity and Surface Morphology of Pt- and Ag-Ion Deposited Silicon[J]. Plasma Science and Technology, 2012, 14(4): 333-337. DOI: 10.1088/1009-0630/14/4/12 |
[8] | M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09 |
[9] | H. Martínez, O. Flores, J. C. Poveda, B. Campillo. Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions[J]. Plasma Science and Technology, 2012, 14(4): 303-311. DOI: 10.1088/1009-0630/14/4/07 |
[10] | N. U. REHMAN, F. U. KHAN, S. NASEER, G. MURTAZA, S. S. HUSSAIN, I. AHMAD, M. ZAKAULLAH. Trace-Rare-Gas Optical Emission Spectroscopy of Nitrogen Plasma Generated at a Frequency of 13.56 MHz[J]. Plasma Science and Technology, 2011, 13(2): 208-212. |
1. | Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1 |
2. | Xu, S., Liang, Y., Knieps, A. et al. Modeling of plasma beta effects on the island divertor transport in the standard configuration of W7-X. Nuclear Fusion, 2023, 63(6): 066005. DOI:10.1088/1741-4326/acc7b8 |
3. | Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533 |
4. | Liang, Y., Chen, Z., Wang, N. et al. Towards advanced divertor configurations on the J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124021. DOI:10.1088/2058-6272/acaa8d |
5. | Li, B., Wang, T., Nie, L. et al. Reconstruction of the emissivity and flow for Doppler coherence imaging spectroscopy (CIS) on J-TEXT. Fusion Engineering and Design, 2022. DOI:10.1016/j.fusengdes.2022.113271 |
6. | Li, S., Wang, N., Ding, Y. et al. Impact of the non-axisymmetric SOL current driven by a biased electrode on the diverted J-TEXT plasma. Plasma Physics and Controlled Fusion, 2022, 64(7): 075005. DOI:10.1088/1361-6587/ac72bf |