Citation: | Yuqi CHU, Haiqing LIU, Shoubiao ZHANG, Liqing XU, Erzhong LI, Yinxian JIE, Hui LIAN, Tianfu ZHOU, Xi FENG, Xuexi ZHANG, Yunfei WANG, Xiang ZHU, Chenbin WU, Shouxin WANG, Yao YANG, K HANADA, Bo LYU, Yingying LI, Qing ZANG, EAST Team. Magnetohydrodynamic effect of internal transport barrier on EAST tokamak[J]. Plasma Science and Technology, 2022, 24(3): 035102. DOI: 10.1088/2058-6272/ac2726 |
An internal transport barrier (ITB) can be formed on EAST in exploring high-parameter operation. Previous studies show that safety factor (q) profiles, Shafranov shift and magnetohydrodynamic behaviors could be helpful in ITB formation by suppressing anomalous transport. Recently, electron density evolution with high resolution demonstrates that fishbone could be dominant in electron density ITB formation and sustainment. The power threshold is low in the fishbone condition and the electron density profile is determined by traits of fishbone. Simulation shows that the low-k ion mode is suppressed by fishbone. Direct measurement of turbulence in the inner region shows that the internal kink mode could sustain an electron temperature ITB by suppressing the trapped electron mode. The multi-scale interaction between the kink mode and turbulence by current could be key in sustaining high-electron-temperature long-pulse operation.
This work is supported by the National Key R&D Program of China (No. 2017YFE0301705). This work is also supported in part by the Key Program of Research and Development of Hefei Science Center, CAS (No. 2019HSC-KPRD001). This work is also supported by National Natural Science Foundation of China (Nos. 11975271 and 11675211). This work was partly supported by the Collaborative Research Program of the Research Institute for Applied Mechanics, Kyushu University.
[1] |
ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137 doi: 10.1088/0029-5515/39/12/301
|
[2] |
Gormezano C et al 1998 Phys. Rev. Lett. 80 5544 doi: 10.1103/PhysRevLett.80.5544
|
[3] |
Joffrin E et al 2002 Nucl. Fusion 42 235 doi: 10.1088/0029-5515/42/3/302
|
[4] |
Fujita T and the JT-60 Team 2003 Nucl. Fusion 43 1527 doi: 10.1088/0029-5515/43/12/001
|
[5] |
Bell R E et al 1998 Phys. Rev. Lett. 81 1429 doi: 10.1103/PhysRevLett.81.1429
|
[6] |
Greenfield C M et al 2000 Phys. Plasmas 7 1959 doi: 10.1063/1.874176
|
[7] |
Quigley E D et al 2004 Nucl. Fusion 44 1189 doi: 10.1088/0029-5515/44/11/004
|
[8] |
Hoang G T et al 2000 Phys. Rev. Lett. 84 4593 doi: 10.1103/PhysRevLett.84.4593
|
[9] |
Yu D L et al 2016 Nucl. Fusion 56 056003 doi: 10.1088/0029-5515/56/5/056003
|
[10] |
Baranov Y F et al 1999 Nucl. Fusion 39 1463 doi: 10.1088/0029-5515/39/10/308
|
[11] |
Litaudon X et al 1999 Plasma Phys. Control. Fusion 41 A733 doi: 10.1088/0741-3335/41/3A/066
|
[12] |
Fujisawa A et al 2004 Phys. Rev. Lett. 93 165002 doi: 10.1103/PhysRevLett.93.165002
|
[13] |
Austin M E et al 2006 Phys. Plasmas 13 082502 doi: 10.1063/1.2245579
|
[14] |
Maget P et al 2003 Plasma Phys. Control. Fusion 45 1385 doi: 10.1088/0741-3335/45/8/301
|
[15] |
Fourment C et al 2003 Plasma Phys. Control. Fusion 45 233 doi: 10.1088/0741-3335/45/3/305
|
[16] |
Long F F et al 2020 Nucl. Fusion 60 036008 doi: 10.1088/1741-4326/ab668c
|
[17] |
Yang Y et al 2017 Plasma Phys. Control. Fusion 59 085003 doi: 10.1088/1361-6587/aa6f2a
|
[18] |
Gao X and the EAST team 2018 Phys. Lett. A 382 1242 doi: 10.1016/j.physleta.2018.03.006
|
[19] |
Wu M F et al 2020 Plasma Sci. Technol. 22 025102 doi: 10.1088/2058-6272/ab4f8a
|
[20] |
Joffrin E et al 2003 Nucl. Fusion 43 1167 doi: 10.1088/0029-5515/43/10/018
|
[21] |
Liu Z X et al 2020 Nucl. Fusion 60 122001 doi: 10.1088/1741-4326/abb146
|
[22] |
Li J et al 2013 Nat. Phys. 9 817 doi: 10.1038/nphys2795
|
[23] |
Wan B N et al 2015 Nucl. Fusion 55 104015 doi: 10.1088/0029-5515/55/10/104015
|
[24] |
Liu F K et al 2015 Nucl. Fusion 55 123022 doi: 10.1088/0029-5515/55/12/123022
|
[25] |
Hu C D 2015 Plasma Sci. Technol. 17 1 doi: 10.1088/1009-0630/17/1/01
|
[26] |
Li Y Y et al 2014 Rev. Sci. Instrum. 85 11E428 doi: 10.1063/1.4890408
|
[27] |
Zang Q et al 2011 Rev. Sci. Instrum. 82 063502 doi: 10.1063/1.3599039
|
[28] |
Han X et al 2014 Rev. Sci. Instrum. 85 073506 doi: 10.1063/1.4891040
|
[29] |
Liu H Q et al 2016 Rev. Sci. Instrum. 87 11D903 doi: 10.1063/1.4963378
|
[30] |
Zhu X et al 2015 Plasma Sci. Technol. 17 733 doi: 10.1088/1009-0630/17/9/03
|
[31] |
Qian J P et al 2017 Nucl. Fusion 57 036008 doi: 10.1088/1741-4326/aa4e58
|
[32] |
Xu L Q et al 2015 Phys. Plasmas 22 122510 doi: 10.1063/1.4939020
|
[33] |
Chen L et al 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
|
[34] |
Wong K L et al 2004 Nucl. Fusion 45 30 doi: 10.1088/0029-5515/45/1/004
|
[35] |
Duong H H et al 1993 Nucl. Fusion 33 749 doi: 10.1088/0029-5515/33/5/I06
|
[36] |
Staebler G M, Kinsey J E and Waltz R E 2005 Phys. Plasmas 12 102508 doi: 10.1063/1.2044587
|
[37] |
Staebler G M et al 2007 Phys. Plasmas 14 055909 doi: 10.1063/1.2436852
|
[38] |
Staebler G M et al 2013 Phys. Rev. Lett. 110 055003 doi: 10.1103/PhysRevLett.110.055003
|
[39] |
Staebler G M et al 2013 Nucl. Fusion 53 113017 doi: 10.1088/0029-5515/53/11/113017
|
[40] |
Feng X et al 2019 Rev. Sci. Instrum. 90 024704 doi: 10.1063/1.5075615
|
[41] |
Lian H et al 2019 Rev. Sci. Instrum. 90 053501 doi: 10.1063/1.5089699
|
[42] |
Ding W X et al 2003 Phys. Rev. Lett. 90 035002 doi: 10.1103/PhysRevLett.90.035002
|
[43] |
Zhang T et al 2018 Plasma Sci. Technol. 20 115101 doi: 10.1088/2058-6272/aac9b5
|
[44] |
Wang W X et al 2019 Nucl. Fusion 59 084002 doi: 10.1088/1741-4326/ab266d
|
[1] | Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13 |
[2] | WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04 |
[3] | LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15 |
[4] | T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02 |
[5] | WANG Qing(王庆), BA Dechun(巴德纯), MING Yue(明悦), XU Lin(徐林), GUO Deyu(郭德宇). Low Temperature Nitriding of 304 Austenitic Stainless Steel Using RF-ICP Method: the Role of Ion Beam Flux Density[J]. Plasma Science and Technology, 2014, 16(10): 960-963. DOI: 10.1088/1009-0630/16/10/10 |
[6] | XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24 |
[7] | CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19 |
[8] | WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07 |
[9] | HU Chundong(胡纯栋), XIE Yahong(谢亚红), NBI team. The Development of a Megawatt-Level High Current Ion Source[J]. Plasma Science and Technology, 2012, 14(1): 75-77. DOI: 10.1088/1009-0630/14/1/16 |
[10] | ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546. |