Citation: | Yuanzheng ZHAO, Yu ZHANG, Jianjun WU, Yang OU, Peng ZHENG. Characteristics of plasma in a novel laser-assisted pulsed plasma thruster[J]. Plasma Science and Technology, 2022, 24(7): 074001. DOI: 10.1088/2058-6272/ac337b |
A novel laser-assisted pulsed plasma thruster (LA-PPT) is proposed as an electric propulsion thruster, which separates laser ablation and electromagnetic acceleration. It aims for a higher specific impulse than that achieved with conventional LA-PPTs. Owing to the short-time discharge and the novel configuration, the physical mechanism of the discharge is unclear. Time and spatial-resolved optical emission spectroscopy was applied to investigate the variation in the plasma properties in the thruster discharge channel. The plasma species, electron temperature, and electron density were obtained and discussed. Our investigation revealed that there were Hα, Hβ, Hγ, Hε atoms, C Ⅰ, C Ⅱ, C Ⅲ, C Ⅳ, Cl Ⅰ, Cl Ⅱ particles, and a small amount of CH, C3, C2, H2 neutral molecular groups in the plasma. The electron temperature of the discharge channel of the thruster was within 0.6–4.9 eV, and the electron density was within (1.1–3.0) × 1018 cm-3, which shows that the optical emission spectroscopy method is to measure the electron excitation temperature and electron density in heavy particles. But the Langmuir probe method is to measure the temperature and density of free electrons. The use of laser instead of spark plug as the ignition mode significantly changed the plasma distribution in the discharge channel. Unlike the conventional PPT, which has high electron density near the thruster surface, LA-PPT showed relatively large electron density at the thruster outlet, which increased the thruster specific impulse. In addition, the change in the ignition mode enabled the electron density in the LA-PPT discharge channel to be higher than that in the conventional PPT. This proves that the ignition mode with laser replacing the spark plug effectively optimised the PPT performance.
This research was supported by National Natural Science Foundation of China (No. 11772354).
[1] |
Zhang Z et al 2018 J. Phys. D: Appl. Phys. 51 395201 doi: 10.1088/1361-6463/aad851
|
[2] |
Ou Y et al 2019 Vacuum 165 163 doi: 10.1016/j.vacuum.2019.04.027
|
[3] |
Zhang Z et al 2019 Rev. Mod. Plasma Phys. 3 5 doi: 10.1007/s41614-019-0027-z
|
[4] |
Wu J J et al 2020 Plasma Sci. Technol. 22 094007 doi: 10.1088/2058-6272/ab9171
|
[5] |
Wu Z W et al 2020 Plasma Sci. Technol. 22 094014 doi: 10.1088/2058-6272/aba7ac
|
[6] |
Schönherr T, Komurasaki K and Herdrich G 2013 J. Propul. Power 29 1478 doi: 10.2514/1.B34789
|
[7] |
Ou Y et al 2021 Acta Astronaut. 183 199 doi: 10.1016/j.actaastro.2021.03.018
|
[8] |
Zhang Z et al 2017 Plasma Sources Sci. Technol. 27 015004 doi: 10.1088/1361-6595/aa9e6b
|
[9] |
Markusic T E and Spores R A 1997 Spectroscopic emission measurements of a pulsed plasma thruster plume Proc. of the 33rd Joint Propulsion Conf. and Exhibit (Seattle) (AIAA)
|
[10] |
Koizumi H et al 2007 Phys. Plasmas 14 033506 doi: 10.1063/1.2710454
|
[11] |
Liu F et al 2008 Appl. Phys. Lett. 93 111502 doi: 10.1063/1.2983747
|
[12] |
Schönherr T et al 2013 Phys. Plasmas 20 033503 doi: 10.1063/1.4794198
|
[13] |
Wu Z W et al 2017 Phys. Plasmas 24 113521 doi: 10.1063/1.4986128
|
[14] |
Ling Y L et al 2019 Spectroscopic plasma emission from a pulsed plasma thruster with asymmetric electrodes Proc. of the AIAA Propulsion and Energy 2019 Forum (Indianapolis) (AIAA)
|
[15] |
Zhou Y et al 2020 Plasma Sci. Technol. 22 065504 doi: 10.1088/2058-6272/ab7ed9
|
[16] |
Zhang Z et al 2020 Plasma Sources Sci. Technol. 29 045006 doi: 10.1088/1361-6595/ab760a
|
[17] |
Huang T K et al 2015 Phys. Plasmas 22 103511 doi: 10.1063/1.4933211
|
[18] |
Pearse R W B and Gaydon A G 1976 The Identification of Molecular Spectra 4th edn (London: Chapman and Hall)
|
[19] |
Wang W W et al 2013 EPL 101 55001 doi: 10.1209/0295-5075/101/55001
|
[20] |
Zhang H 2016 Theoretical and experimental investigation on operation process and propellant modification of pulsed plasma thruster PhD Thesis National University of Defense Technology, Changsha, China (in Chinese)
|
[21] |
Orrière T, Moreau E and Pai D Z 2018 J. Phys. D: Appl. Phys. 51 494002 doi: 10.1088/1361-6463/aae134
|
[22] |
Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)
|
[23] |
Zhao W H et al 2007 Spectrosc. Spect. Anal. 27 2145 (in Chinese)
|
[24] |
Zhang Z et al 2011 Electrostatic probe measurements in a 4J pulsed plasma thruster Proc. of the 32th Int. Electric Propulsion Conf. (Wiesbaden, Germany)
|
[25] |
Byrne L T 2002 Langmuir probe measurements in the plume of a pulsed plasma thruster MSc Thesis Worcester Polytechnic Institute, Worcester, USA
|
[1] | Yang ZHOU (周阳), Ningfei WANG (王宁飞), Xiangyang LIU (刘向阳), William Yeong Liang LING (林永樑), Kan XIE (谢侃), Zhiwen WU (武志文). Experimental investigation on the evolution of plasma properties in the discharge channel of a pulsed plasma thruster[J]. Plasma Science and Technology, 2020, 22(6): 65504-065504. DOI: 10.1088/2058-6272/ab7ed9 |
[2] | Yu ZHANG (张宇), Jianjun WU (吴建军), Yang OU (欧阳), Daixian ZHANG (张代贤), Jian LI (李健). Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy[J]. Plasma Science and Technology, 2020, 22(4): 45501-045501. DOI: 10.1088/2058-6272/ab5a8e |
[3] | Hongyue LI (李红月), Xingwei WU (吴兴伟), Cong LI (李聪), Yong WANG (王勇), Ding WU (吴鼎), Jiamin LIU (刘佳敏), Chunlei FENG (冯春雷), Hongbin DING (丁洪斌). Study of spatial and temporal evolution of Ar and F atoms in SF6/Ar microsecond pulsed discharge by optical emission spectroscopy[J]. Plasma Science and Technology, 2019, 21(7): 74008-074008. DOI: 10.1088/2058-6272/ab0c46 |
[4] | Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6 |
[5] | Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e |
[6] | Xiangyang LIU (刘向阳), Siyu WANG (王司宇), Yang ZHOU (周阳), Zhiwen WU (武志文), Kan XIE (谢侃), Ningfei WANG (王宁飞). Thermal radiation properties of PTFE plasma[J]. Plasma Science and Technology, 2017, 19(6): 64012-064012. DOI: 10.1088/2058-6272/aa65e8 |
[7] | LAN Hui (兰慧), WANG Xinbing (王新兵), ZUO Duluo (左都罗). Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma[J]. Plasma Science and Technology, 2016, 18(9): 902-906. DOI: 10.1088/1009-0630/18/9/05 |
[8] | LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08 |
[9] | M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11 |
[10] | V. SIVAKUMARAN, AJAI KUMAR, R. K. SINGH, V. PRAHLAD, H. C. JOSHI. Atomic Processes in Emission Characteristics of a Lithium Plasma Plume Formed by Double-Pulse Laser Ablation[J]. Plasma Science and Technology, 2013, 15(3): 204-208. DOI: 10.1088/1009-0630/15/3/02 |
1. | Yang, Z., Guo, H., Bai, J. et al. Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect. Plasma Science and Technology, 2023, 25(4): 045506. DOI:10.1088/2058-6272/aca13f |