Citation: | Kaibang WU, Lai WEI, Zhengxiong WANG. Analysis of anomalous transport based on radial fractional diffusion equation[J]. Plasma Science and Technology, 2022, 24(4): 045101. DOI: 10.1088/2058-6272/ac41bd |
Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations. It is shown that for fractional transport models, hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients (FDCs) are radially dependent or not. When a radially dependent FDC Dα(r) < 1 is imposed, compared with the case under Dα(r) = 1.0, it is observed that the position of the peak of the density profile is closer to the core. Further, it is found that when FDCs at the positions of source injections increase, the peak values of density profiles decrease. The non-local effect becomes significant as the order of fractional derivative α → 1 and causes the uphill transport. However, as α → 2, the fractional diffusion model returns to the standard model governed by Fick's law.
The authors thank Dr Patrick Diamond for his comments on this work. This work is supported by the National MCF Energy R & D Program of China (No. 2019YFE03090300), National Natural Science Foundation of China (No. 11925501), and Fundamental Research Funds for the Central Universities (No. DUT21GJ204).
[1] |
Callen J D and Kissick M W 1997 Plasma Phys. Control. Fusion 39 B173 doi: 10.1088/0741-3335/39/12B/014
|
[2] |
Gentle K W et al 1995 Phys. Plasmas 2 2292 doi: 10.1063/1.871252
|
[3] |
del-Castillo-Negrete D, Carreras B A and Lynch V E 2004 Phys. Plasmas 11 3854 doi: 10.1063/1.1767097
|
[4] |
Carreras B A, Lynch V E and Zaslavsky G M 2001 Phys. Plasmas 8 5096 doi: 10.1063/1.1416180
|
[5] |
del-Castillo-Negrete D, Carreras B A and Lynch V E 2005 Phys. Rev. Lett. 94 065003 doi: 10.1103/PhysRevLett.94.065003
|
[6] |
Bovet A et al 2014 Nucl. Fusion 54 104009 doi: 10.1088/0029-5515/54/10/104009
|
[7] |
Furno I et al 2016 Plasma Phys. Control. Fusion 58 014023 doi: 10.1088/0741-3335/58/1/014023
|
[8] |
Luce T C, Petty C C and de Haas J C M 1992 Phys. Rev. Lett. 68 52 doi: 10.1103/PhysRevLett.68.52
|
[9] |
Petty C C and Luce T C 1994 Nucl. Fusion 34 121 doi: 10.1088/0029-5515/34/1/I09
|
[10] |
Mantica P et al 2000 Phys. Rev. Lett. 85 4534 doi: 10.1103/PhysRevLett.85.4534
|
[11] |
Ding S Y et al 2014 Plasma Sci. Technol. 16 826 doi: 10.1088/1009-0630/16/9/04
|
[12] |
Song S D et al 2012 Nucl. Fusion 52 033006 doi: 10.1088/0029-5515/52/3/033006
|
[13] |
Baiocchi B et al 2015 Nucl. Fusion 55 123001 doi: 10.1088/0029-5515/55/12/123001
|
[14] |
Baldzuhn J et al 2018 Plasma Phys. Control. Fusion 60 035006 doi: 10.1088/1361-6587/aaa184
|
[15] |
Du H R et al 2017 Phys. Plasmas 24 122501 doi: 10.1063/1.5000125
|
[16] |
Du H R et al 2020 Phys. Plasmas 27 012502 doi: 10.1063/1.5126662
|
[17] |
Li J C, Dong J Q and Liu S F 2020 Plasma Sci. Technol. 22 055101 doi: 10.1088/2058-6272/ab62e4
|
[18] |
Zhong W L et al 2016 Phys. Rev. Lett. 117 045001 doi: 10.1103/PhysRevLett.117.045001
|
[19] |
Ida K et al 2009 Phys. Plasmas 16 056111 doi: 10.1063/1.3111097
|
[20] |
Han M K et al 2021 Nucl. Fusion 61 046010 doi: 10.1088/1741-4326/abcdb8
|
[21] |
Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Amsterdam: Gordon and Breach Science Publishers)
|
[22] |
Podlubny I 1999 Fractional Differential Equations (San Diego: Academic)
|
[23] |
Li C P and Zeng F H 2015 Numerical Methods for Fractional Calculus (New York: CRC Press)
|
[24] |
del-Castillo-Negrete D 2006 Phys. Plasmas 13 082308 doi: 10.1063/1.2336114
|
[25] |
Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167 doi: 10.1063/1.1704269
|
[26] |
van Milligen B P, Sánchez R and Carreras B A 2004 Phys. Plasmas 11 2272 doi: 10.1063/1.1701893
|
[27] |
van Milligen B P, Carreras B A and Sánchez R 2004 Phys. Plasmas 11 3787 doi: 10.1063/1.1763915
|
[28] |
Sánchez R, van Milligen B P and Carreras B A 2005 Phys. Plasmas 12 056105 doi: 10.1063/1.1869499
|
[29] |
Kullberg A et al 2013 Phys. Rev. E 87 052115 doi: 10.1103/PhysRevE.87.052115
|
[30] |
Kullberg A B 2014 Non-local fractional diffusion and transport in magnetized plasmas PhD Thesis University of California, Los Angeles, USA
|
[31] |
Kullberg A, Morales G J and Maggs J E 2014 Phys. Plasmas 21 032310 doi: 10.1063/1.4868862
|
[32] |
Maggs J E and Morales G J 2019 Phys. Rev. E 99 013307 doi: 10.1103/PhysRevE.99.013307
|
[33] |
Maggs J E and Morales G J 2019 Phys. Plasmas 26 052505 doi: 10.1063/1.5089461
|
[34] |
Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications)
|
[35] |
Synakowski E J et al 1990 Phys. Rev. Lett. 65 2255 doi: 10.1103/PhysRevLett.65.2255
|
[1] | Hongmei DU (杜洪梅), Liping ZHANG (张丽萍), Dongao LI (李东澳). THz plasma wave instability in field effect transistor with electron diffusion current density[J]. Plasma Science and Technology, 2018, 20(11): 115001. DOI: 10.1088/2058-6272/aacaef |
[2] | Arif ULLAH, Majid KHAN, M KAMRAN, R KHAN, Zhengmao SHENG (盛正卯). Monte-Carlo simulation of a stochastic differential equation[J]. Plasma Science and Technology, 2017, 19(12): 125001. DOI: 10.1088/2058-6272/aa8f3f |
[3] | Rong CHEN (陈绒), Jianhua YANG (杨建华), Xinbing CHENG (程新兵), Zilong PAN (潘子龙). Research of a fractional-turn ratio saturable pulse transformer and its application in a microsecond-range pulse modulator[J]. Plasma Science and Technology, 2017, 19(6): 64014-064014. DOI: 10.1088/2058-6272/aa6155 |
[4] | YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03 |
[5] | Joseph-Marie PLEWA, Olivier DUCASSE, Philippe DESSANTE, Carolyn JACOBS, Olivier EICHWALD, Nicolas RENON, Mohammed YOUSFI. Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation[J]. Plasma Science and Technology, 2016, 18(5): 538-543. DOI: 10.1088/1009-0630/18/5/16 |
[6] | SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01 |
[7] | ZHENG Pingwei(郑平卫), GONG Xueyu(龚学余), YU Jun(余俊), DU Dan(杜丹). Fully Implicit Iterative Solving Method for the Fokker-Planck Equation in Tokamak Plasmas[J]. Plasma Science and Technology, 2014, 16(11): 1000-1006. DOI: 10.1088/1009-0630/16/11/02 |
[8] | YU Xingang (余新刚), GOU Fujun (苟富均). Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten[J]. Plasma Science and Technology, 2013, 15(7): 710-715. DOI: 10.1088/1009-0630/15/7/19 |
[9] | SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02 |
[10] | CHEN Ling (陈玲), WU Dejin (吴德金). Dispersion Equation of Low-Frequency Waves Driven by Temperature Anisotropy[J]. Plasma Science and Technology, 2012, 14(10): 880-885. DOI: 10.1088/1009-0630/14/10/05 |
1. | Zhang, L., Zhang, D., Yu, J. et al. Experimental study on the improvement of spray characteristics of aero-engines using gliding arc plasma. Plasma Science and Technology, 2023, 25(3): 035502. DOI:10.1088/2058-6272/ac92cf |
2. | Fei, L., Zhao, B., Liu, X. et al. Application study on plasma ignition in aeroengine strut-cavity-injector integrated afterburner. Plasma Science and Technology, 2021, 23(10): 105504. DOI:10.1088/2058-6272/ac183c |