Advanced Search+
Hailong ZHU, Qixiang HUANG, Yifan WU, Yurui LI, Kechang REN. Formation and destruction of striation plasmas in helium glow discharge at medium pressures[J]. Plasma Science and Technology, 2022, 24(5): 055406. DOI: 10.1088/2058-6272/ac496d
Citation: Hailong ZHU, Qixiang HUANG, Yifan WU, Yurui LI, Kechang REN. Formation and destruction of striation plasmas in helium glow discharge at medium pressures[J]. Plasma Science and Technology, 2022, 24(5): 055406. DOI: 10.1088/2058-6272/ac496d

Formation and destruction of striation plasmas in helium glow discharge at medium pressures

More Information
  • Author Bio:

    Hailong ZHU, E-mail: zhuhl@sxu.edu.cn

  • Received Date: November 17, 2021
  • Revised Date: January 05, 2022
  • Accepted Date: January 07, 2022
  • Available Online: December 11, 2023
  • Published Date: April 12, 2022
  • The striation plasmas are usually generated within a positive column of glow discharge, where rich and complex physical interactions are involved, especially, in the medium or high pressures. Along these lines, our work aims to thoroughly investigate the formation and destruction of helium striation plasmas at kPa level pressures. The characteristics of the helium striation plasmas, and especially the optical emission properties are explored. The emission lines of 706.52 nm and 391.44 nm related to the energetic electrons and the high-energy metastable helium atoms respectively, were focused on in this work. The formation of striation plasmas in a helium glow discharge, is mainly associated with the instability originating from the stepwise ionization of high-energy metastable state atoms, Maxwellization of the electron distribution functions and gas heating. Additionally, the destruction effect of helium striation plasmas is of great significance when a small amount of nitrogen or oxygen is mixed into the discharge plasmas. The reduction of the mean electron energy and the consumption of the high-energy metastable helium atoms are considered as the underlying reasons for the destruction of striation plasmas.

  • The study was supported by National Natural Science Foundation of China (No. 11875039). We are also grateful to Dr. Yujun Shi from Shanxi University for his valuable discussion.

  • [1]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [2]
    Smirnov B M 2015 Theory of Gas Discharge Plasma (Cham: Springer)
    [3]
    Kolobov V I 2006 J. Phys. D: Appl. Phys. 39 R487 doi: 10.1088/0022-3727/39/24/R01
    [4]
    Liu Y X et al 2016 Phys. Rev. Lett. 116 255002 doi: 10.1103/PhysRevLett.116.255002
    [5]
    Lisovskiy V A et al 2012 Eur. J. Phys. 33 1537 doi: 10.1088/0143-0807/33/6/1537
    [6]
    Pekàrek L 1968 Usp. Fiz. Nauk 94 463 doi: 10.3367/UFNr.0094.196803d.0463
    [7]
    Zhu H L, Su Z X and Dong Y E 2017 Appl. Phys. Lett. 111 054104 doi: 10.1063/1.4992065
    [8]
    Yang Y et al 2005 IEEE Trans. Plasma Sci. 33 302 doi: 10.1109/TPS.2005.845113
    [9]
    Zhu W Y et al 2021 Phys. Plasmas 28 113502 doi: 10.1063/5.0065771
    [10]
    Arslanbekov R R and Kolobov V I 2019 Phys. Plasmas 26 104501 doi: 10.1063/1.5121846
    [11]
    Wellenstein H F and Robertson W W 1972 J. Appl. Phys. 43 4823 doi: 10.1063/1.1661025
    [12]
    Golubovskii Y B, Nekuchaev V O and Skoblo A Y 2014 Tech. Phys. 59 1787 doi: 10.1134/S1063784214120093
    [13]
    Golubovskii Y, Gurkova T and Valin S 2021 Plasma Sources Sci. Technol. 30 115001 doi: 10.1088/1361-6595/ac2cfc
    [14]
    Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001 doi: 10.1088/0022-3727/43/40/403001
    [15]
    Dyatko N A et al 2011 IEEE Trans. Plasma Sci. 39 2532 doi: 10.1109/TPS.2011.2136348
    [16]
    Golubovskii Y et al 2019 Plasma Sources Sci. Technol. 28 045015 doi: 10.1088/1361-6595/ab0936
    [17]
    Kolobov V I et al 2020 J. Phys. D: Appl. Phys. 53 25LT01 doi: 10.1088/1361-6463/ab7ca0
    [18]
    Golubovskii Y B et al 2018 Plasma Sources Sci. Technol. 27 085009 doi: 10.1088/1361-6595/aad799
    [19]
    Golubovskii Y B, Siasko A V and Nekuchaev V O 2019 Plasma Sources Sci. Technol. 28 045007 doi: 10.1088/1361-6595/ab1322
    [20]
    Zhu H L, Yao W X and Li Z X 2020 Plasma Process. Polym. 17 1900271 doi: 10.1002/ppap.201900271
    [21]
    Fujiwara Y et al 2016 Jpn. J. Appl. Phys. 55 010301 doi: 10.7567/JJAP.55.010301
    [22]
    Pollard W, Suzuki P and Staack D 2014 IEEE Trans. Plasma Sci. 42 2650 doi: 10.1109/TPS.2014.2324536
    [23]
    Tsendin L D 2010 Phys. -Usp. 53 133 doi: 10.3367/UFNe.0180.201002b.0139
    [24]
    Kabouzi Y et al 2002 J. Appl. Phys. 91 1008 doi: 10.1063/1.1425078
    [25]
    Ghasemi M, Sohbatzadeh F and Mirzanejhad S 2015 J. Theor. Appl. Phys. 9 177 doi: 10.1007/s40094-015-0176-6
    [26]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 075201 doi: 10.1088/0022-3727/43/7/075201
    [27]
    Tsuchida K 1984 Jpn. J. Appl. Phys. 23 338 doi: 10.1143/JJAP.23.338
    [28]
    Jolly J, Touzeau M and Ricard A 1981 J. Phys. B: Atom. Mol. Phys. 14 473 doi: 10.1088/0022-3700/14/3/024
    [29]
    Hamdan A et al 2015 J. Phys. D: Appl. Phys. 48 035202 doi: 10.1088/0022-3727/48/3/035202
    [30]
    Niemi K et al 2011 Plasma Sources Sci. Technol. 20 055005 doi: 10.1088/0963-0252/20/5/055005
    [31]
    Nikolić M et al 2015 J. Appl. Phys. 117 023304 doi: 10.1063/1.4905611
    [32]
    Baldwin K G 2005 Contemp. Phys. 46 105 doi: 10.1080/00107510412331332798
    [33]
    Niermann B et al 2010 Eur. Phys. J. D 60 489 doi: 10.1140/epjd/e2010-00166-8
    [34]
    Golant V E, Zhilinski A P and Sakharov I E 1977 Fundamentals of Plasma Physics (Moscow: Atomizdat)
    [35]
    Siefert N S, Sands B L and Ganguly B N 2006 Appl. Phys. Lett. 89 011502 doi: 10.1063/1.2219982
    [36]
    Nersisyan G, Morrow T and Graham W G 2004 Appl. Phys. Lett. 85 1487 doi: 10.1063/1.1784514
    [37]
    Anghel S D, Simon A and Frentiu T 2008 Plasma Sources Sci. Technol. 17 045016 doi: 10.1088/0963-0252/17/4/045016
    [38]
    Dosoudilová L et al 2015 J. Phys. D: Appl. Phys. 48 355204 doi: 10.1088/0022-3727/48/35/355204
    [39]
    Léveillé V and Coulombe S 2006 Plasma Process. Polym. 3 587 doi: 10.1002/ppap.200600051
  • Related Articles

    [1]Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb
    [2]Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d
    [3]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [4]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [5]Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2
    [6]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [9]LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05
    [10]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01

Catalog

    Figures(7)

    Article views (88) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return