Advanced Search+
Chuanqi WANG, Junjie QIAO, Yijia SONG, Qi YANG, Dazhi WANG, Qingyuan ZHANG, Zhan SHU, Qing XIONG. In situ quantification of NO synthesis in a warm air glow discharge by WMS-based Mid-IR QCL absorption spectroscopy[J]. Plasma Science and Technology, 2022, 24(4): 045503. DOI: 10.1088/2058-6272/ac496e
Citation: Chuanqi WANG, Junjie QIAO, Yijia SONG, Qi YANG, Dazhi WANG, Qingyuan ZHANG, Zhan SHU, Qing XIONG. In situ quantification of NO synthesis in a warm air glow discharge by WMS-based Mid-IR QCL absorption spectroscopy[J]. Plasma Science and Technology, 2022, 24(4): 045503. DOI: 10.1088/2058-6272/ac496e

In situ quantification of NO synthesis in a warm air glow discharge by WMS-based Mid-IR QCL absorption spectroscopy

More Information
  • Corresponding author:

    Qing XIONG, E-mail: qingxiong@cqu.edu.cn

  • Supplementary material for this article is available online

  • Received Date: November 02, 2021
  • Revised Date: January 03, 2022
  • Accepted Date: January 06, 2022
  • Available Online: December 15, 2023
  • Published Date: April 03, 2022
  • Nitric oxide (NO) is one of the most crucial products in the plasma-based nitrogen fixation process. In this work, in situ measurements were performed for quantifying the NO synthesis spatially in a warm air glow discharge, through the method of Mid-infrared quantum cascade laser absorption spectroscopy (QCL-AS). Two ro-vibrational transitions at 1900.076 cm-1 and 1900.517 cm-1 of the ground-state NO(X) were probed sensitively by the help of the wavelength modulation spectroscopy (WMS) approach to increase the signal/noise (S/N) level. The results show a decline trend of NO synthesis rate along the discharge channel from the cathode to the anode. However, from the point of energy efficiency, the cathode region is of significantly low energy efficiency of NO production. Severe disproportionality was found for the high energy consumption but low NO production in the region of cathode area, compared to that in the positive column zone. Further analysis demonstrates the high energy cost of NO production in the cathode region, is ascribed to the extremely high reduced electric field E/N therein not selectively preferable for the processes of vibrational excitation or dissociation of N2 and O2 molecules. This drags down the overall energy efficiency of NO synthesis by this typical warm air glow discharge, particularly for the ones with short electrode gaps. Limitations of further improving the energy cost of NO synthesis by variations of the discharge operation conditions, such as discharge current or airflow rate, imply other effective manners able to tune the energy delivery selectively to the NO formation process, are sorely needed.

  • This work was partly supported by National Natural Science Foundation of China (Nos. 11975061, 52111530088), the Technology Innovation and Application Development Project of Chongqing (No. cstc2019jscx-msxmX0041), the Construction Committee Project of Chongqing (No. 2018-1-3-6), and the Fundamental Research Funds for the Central Universities (No. 2019CDQYDQ034). We also appreciate Dr Nikolay Britun (Center for Low-temperature Plasma Sciences, Nagoya University, Japan) for the helpful discussions.

  • [1]
    Chen J G et al 2018 Science 360 eaar6611 doi: 10.1126/science.aar6611
    [2]
    Cherkasov N, Ibhadon A O and Fitzpatrick P 2015 Chem. Eng. Process.: Process Intensific. 90 24 doi: 10.1016/j.cep.2015.02.004
    [3]
    Tanabe Y and Nishibayashi Y 2013 Coord. Chem. Rev. 257 2551 doi: 10.1016/j.ccr.2013.02.010
    [4]
    Erisman J W et al 2008 Nat. Geosci. 1 636 doi: 10.1038/ngeo325
    [5]
    Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press)
    [6]
    Graves D B et al 2019 Plasma Chem. Plasma Process 39 1 doi: 10.1007/s11090-018-9944-9
    [7]
    Ingels R and Graves D B 2016 Plasma Med. 5 257 doi: 10.1615/PlasmaMed.2016015763
    [8]
    Pei X K, Gidon D and Graves D B 2020 J. Phys. D: Appl. Phys. 53 044002 doi: 10.1088/1361-6463/ab5095
    [9]
    Britun N, Gamaleev V and Hori M 2021 Plasma Sources Sci. Technol. 30 08LT02 doi: 10.1088/1361-6595/ac12bf
    [10]
    Pei X K, Gidon D and Graves D B 2018 Plasma Sources Sci. Technol. 27 125007 doi: 10.1088/1361-6595/aaf7ef
    [11]
    Pei X K et al 2019 Chem. Eng. J. 362 217 doi: 10.1016/j.cej.2019.01.011
    [12]
    Zhu Y et al 2021 Plasma Process. Polym. 18 2000223 doi: 10.1002/ppap.202000223
    [13]
    Chen H et al 2021 Plasma Process. Polym. 18 2000200 doi: 10.1002/ppap.202000200
    [14]
    Jardali F et al 2021 Green Chem. 23 1748 doi: 10.1039/D0GC03521A
    [15]
    Patil B S et al 2016 Appl. Catal. B: Environ. 194 123 doi: 10.1016/j.apcatb.2016.04.055
    [16]
    Adams S F, Caplinger J E and Sommers B S 2015 Plasma Sources Sci. Technol. 24 025031 doi: 10.1088/0963-0252/24/2/025031
    [17]
    Sommers B S and Adams S F 2015 J. Phys. D: Appl. Phys. 48 485202 doi: 10.1088/0022-3727/48/48/485202
    [18]
    Verreycken T et al 2010 Plasma Sources Sci. Technol. 19 045004 doi: 10.1088/0963-0252/19/4/045004
    [19]
    Wang W Z et al 2017 ChemSusChem 10 2145 doi: 10.1002/cssc.201700095
    [20]
    Rusanov V D, Fridman A A and Sholin G V 1981 Sov. Phys. Usp. 24 447 doi: 10.1070/PU1981v024n06ABEH004884
    [21]
    Rouwenhorst K H R et al 2021 Energy Environ. Sci. 14 2520 doi: 10.1039/D0EE03763J
    [22]
    Burnette D et al 2016 Plasma Sources Sci. Technol. 25 025012 doi: 10.1088/0963-0252/25/2/025012
    [23]
    Van Gessel A F H et al 2013 J. Phys. D: Appl. Phys. 46 095201 doi: 10.1088/0022-3727/46/9/095201
    [24]
    Preissing P et al 2020 Plasma Sources Sci. Technol. 29 125001 doi: 10.1088/1361-6595/abbd86
    [25]
    Van Gessel A F H and Bruggeman P J 2013 J. Chem. Phys. 138 204306 doi: 10.1063/1.4802959
    [26]
    Reuter S et al 2015 Plasma Sources Sci. Technol. 24 054001 doi: 10.1088/0963-0252/24/5/054001
    [27]
    Welzel S et al 2010 Sensors 10 6861 doi: 10.3390/s100706861
    [28]
    Sun K et al 2013 Meas. Sci. Technol. 24 125203 doi: 10.1088/0957-0233/24/12/125203
    [29]
    Simeni M S, Laux C O and Stancu G D 2017 J. Phys. D: Appl. Phys. 50 274004 doi: 10.1088/1361-6463/aa72ca
    [30]
    Kelly S and Bogaerts A 2021 Joule 5 3006 doi: 10.1016/j.joule.2021.09.009
    [31]
    Rieker G B, Jeffries J B and Hanson R K 2009 Appl. Opt. 48 5546 doi: 10.1364/AO.48.005546
    [32]
    Peng Z M et al 2011 Opt. Express 19 23104 doi: 10.1364/OE.19.023104
    [33]
    Tachibana K et al 2018 Jpn. J. Appl. Phys. 57 0102BB doi: 10.7567/JJAP.57.0102BB
    [34]
    HITRAN online, Definitions and Units: Line-by-line Parameters (https://hitran.org/docs/definitions-and-units/)
    [35]
    Bruggeman P J, Iza F and Brandenburg R 2017 Plasma Sources Sci. Technol. 26 123002 doi: 10.1088/1361-6595/aa97af
    [36]
    Xiong Q et al 2018 J. Phys. D: Appl. Phys. 51 095207 doi: 10.1088/1361-6463/aaa882
    [37]
    Bruggeman P et al 2008 J. Phys. D: Appl. Phys. 41 215201 doi: 10.1088/0022-3727/41/21/215201
    [38]
    Xiong Q et al 2018 Plasma Sources Sci. Technol. 27 095010 doi: 10.1088/1361-6595/aacf30
    [39]
    Mezei P, Cserfalvi T and Csillag L 2005 J. Phys. D: Appl. Phys. 38 2804 doi: 10.1088/0022-3727/38/16/010
  • Related Articles

    [1]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [2]Pedro AFFONSO NOBREGA, Alain GAUNAND, Vandad ROHANI, François CAUNEAU, Laurent FULCHERI. Applying chemical engineering concepts to non-thermal plasma reactors[J]. Plasma Science and Technology, 2018, 20(6): 65512-065512. DOI: 10.1088/2058-6272/aab301
    [3]Yi WU (吴翊), Yufei CUI (崔彧菲), Jiawei DUAN (段嘉炜), Hao SUN (孙昊), Chunlin WANG (王春林), Chunping NIU (纽春萍). Influence of arc current and pressure on non-chemical equilibrium air arc behavior[J]. Plasma Science and Technology, 2018, 20(1): 14021-014021. DOI: 10.1088/2058-6272/aa9325
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [7]HU Shuanghui (胡爽慧), WANG Baowei (王保伟), LV Yijun (吕一军), YAN Wenjuan (闫文娟). Conversion of Methane to C2 Hydrocarbons and Hydrogen Using a Gliding Arc Reactor[J]. Plasma Science and Technology, 2013, 15(6): 555-561. DOI: 10.1088/1009-0630/15/6/13
    [8]LI Zhihong (李志宏), GUO Bing (郭冰), LI Yunju (李云居), SU Jun (苏俊), LI Ertao (李二涛), BAI Xixiang (白希祥), WANG Youbao (王友宝), ZENG Sheng (曾晟), WANG Baoxiang (王宝祥), YAN Shengquan (颜胜权), LI Zhichang (李志常), et al. Determination of the Astrophysical S(E) Factors or Rates for Radiative Capture Reaction with One Nucleon Transfer Reaction[J]. Plasma Science and Technology, 2012, 14(6): 488-491. DOI: 10.1088/1009-0630/14/6/11
    [9]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [10]WANG Kangjun, LI Xiaosong, ZHU Aimin. A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor[J]. Plasma Science and Technology, 2011, 13(1): 77-81.

Catalog

    Figures(8)

    Article views (111) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return