Citation: | Qilin SHI, Hao WU, Zhao YUAN, Zhe TAO, Guixia LI, Wei LUO, Wei JIANG. The influence of weak transverse magnetic field on plasma dissipation process in the post-arc phase in a vacuum interrupter[J]. Plasma Science and Technology, 2022, 24(5): 055501. DOI: 10.1088/2058-6272/ac4fb3 |
Transverse magnetic field (TMF) contacts and applying external TMF are often adopted for reducing the ablation of the contact surface, but TMF will also affect the breaking performance of the vacuum interrupters. In this work, we investigated the influence of weak TMF on the expansion of the plasma in the post-arc phase with one-dimensional implicit particle-in-cell/Monte Carlo collision model, and we added an external circuit to the model to ensure the correctness of the calculation results. We simulated multiple magnetic field strengths (< 30 mT), compared the plasma expansion process with the TMF strengths of 0 mT and 10 mT, and discussed the influence of metal vapor density on the insulation performance recovery of the vacuum interrupter. From the results, applying TMF with strength below 5 mT has little effect on the expansion of the plasma, and the TMF can increase the plasma density which improve the flow capacity of vacuum circuit breakers when the magnetic field above 10 mT, which is because the particles become more difficult to leave the discharge area under the force of the magnetic field. In general, we find that weak external TMF may adversely affect the breaking performance of the vacuum circuit breakers.
This work was supported by National Natural Science Foundation of China (Nos. 11775090, 51807069 and U1766211).
[1] |
Liu Z Y et al 2007 IEEE Trans. Plasma Sci. 35 856 doi: 10.1109/TPS.2007.896929
|
[2] |
Yuan Z et al 2016 Rev. Sci. Instrum. 87 125103 doi: 10.1063/1.4968578
|
[3] |
Slade P G 2008 The Vacuum Interrupter: Theory, Design, and Application (Boca Raton, FL: CRC Press)
|
[4] |
Li X P et al 2017 2017 4th Int. Conf. on Electric Power Equipment-Switching Technology (ICEPE-ST) (Xi'an, China, 2017) (IEEE) p 389
|
[5] |
Yanabu S et al 1986 IEEE Trans. Power Deliv. 1 202 doi: 10.1109/TPWRD.1986.4308049
|
[6] |
Wang L et al 2005 J. Phys. D: Appl. Phys. 38 1034 doi: 10.1088/0022-3727/38/7/011
|
[7] |
Yang W, Sun Q and Zhou Q H 2020 J. Appl. Phys. 128 060905 doi: 10.1063/5.0014485
|
[8] |
Wang Z X et al 2016 J. Appl. Phys. 120 083301 doi: 10.1063/1.4961420
|
[9] |
Wang Z X et al 2015 IEEE Trans. Plasma Sci. 43 3734 doi: 10.1109/TPS.2015.2467158
|
[10] |
Mo Y P et al 2016 Phys. Plasmas 23 053506 doi: 10.1063/1.4948422
|
[11] |
Mo Y P et al 2015 Phys. Plasmas 22 023511 doi: 10.1063/1.4913677
|
[12] |
Wang D et al 2020 Phys. Plasmas 27 013501 doi: 10.1063/1.5123272
|
[13] |
Wang D et al 2019 J. Phys. D: Appl. Phys. 53 035201 doi: 10.1088/1361-6463/ab4c63
|
[14] |
Shmelev D L and Delachaux T 2010 24th ISDEIV 2010 (Braunschweig, Germany) (IEEE) p 399
|
[15] |
Shmelev D L 2012 2012 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV) (Tomsk, Russia) (IEEE) p 353
|
[16] |
Shmelev D L 2013 IEEE Trans. Plasma Sci. 41 1969 doi: 10.1109/TPS.2013.2244918
|
[17] |
Zhang X et al 2017 J. Phys. D: Appl. Phys. 50 455203 doi: 10.1088/1361-6463/aa8db3
|
[18] |
Zhang X et al 2018 J. Phys. D: Appl. Phys. 52 035204 doi: 10.1088/1361-6463/aaeac0
|
[19] |
Ma H et al 2016 Phys. Plasmas 23 093507 doi: 10.1063/1.4962678
|
[20] |
Ma H et al 2016 Phys. Plasmas 23 063517 doi: 10.1063/1.4954301
|
[21] |
Liu L M et al 2020 Phys. Plasmas 27 063507 doi: 10.1063/5.0006028
|
[22] |
Liu L et al 2020 IEEE Trans. Plasma Sci. 48 4289 doi: 10.1109/TPS.2020.3037913
|
[23] |
Smeets R P P and van der Linden W A 2003 IEEE Trans. Plasma Sci. 31 852 doi: 10.1109/TPS.2003.818438
|
[24] |
Smeets R P P et al 2008 2008 23rd Int. Symp. on Discharges and Electrical Insulation in Vacuum (Bucharest, Romania) (IEEE) p 79
|
[25] |
Holmes R and Yanabu S 1973 J. Phys. D: Appl. Phys. 6 1217 doi: 10.1088/0022-3727/6/10/306
|
[26] |
Schade E 2005 IEEE Trans. Plasma Sci. 33 1564 doi: 10.1109/TPS.2005.856530
|
[27] |
Boxman R L, Sanders D M and Martin P J 1996 Handbook of Vacuum Arc Science & Technology: Fundamentals and Applications (New Jersey: Noyes)
|
[28] |
Trajmar S, Williams W and Srivastava S K 1977 J. Phys. B: At. Mol. Phys. 10 3323 doi: 10.1088/0022-3700/10/16/025
|
[29] |
Yang W et al 2018 Phys. Plasmas 25 063521 doi: 10.1063/1.5032276
|
[30] |
Criffin D C and Pindzola M S 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4347 doi: 10.1088/0953-4075/28/19/019
|
[31] |
Horváth B et al 2017 Plasma Sources Sci. Technol. 26 124001 doi: 10.1088/1361-6595/aa963d
|
[32] |
Verboncoeur J P et al 1993 J. Comput. Phys. 104 321 doi: 10.1006/jcph.1993.1034
|
[33] |
Georgieva V 2006 PhD Thesis Universiteit Antwerpen, Belgium
|
[34] |
Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231 doi: 10.1088/0741-3335/47/5A/017
|
[35] |
Nanbu K, Mitsui K and Kondo S 2000 J. Phys. D: Appl. Phys. 33 2274 doi: 10.1088/0022-3727/33/18/311
|
[36] |
Jiang W et al 2011 Plasma Sources Sci. Technol. 20 035013 doi: 10.1088/0963-0252/20/3/035013
|
[37] |
Yang S L et al 2017 Plasma Sources Sci. Technol. 26 065011 doi: 10.1088/1361-6595/aa6ef1
|
[38] |
Yang S L et al 2018 Plasma Sources Sci. Technol. 27 035008 doi: 10.1088/1361-6595/aab47e
|
[39] |
Tskhakaya D et al 2007 Contrib. Plasma Phys. 47 563 doi: 10.1002/ctpp.200710072
|
[40] |
Wang H Y et al 2015 Chin. Phys. B 24 065207 doi: 10.1088/1674-1056/24/6/065207
|
[41] |
Wang H R et al 2016 2016 27th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV) (Suzhou, China, 2016) (IEEE) p 1
|
[42] |
Yang S L et al 2017 Plasma Process. Polym. 14 1700087 doi: 10.1002/ppap.201700087
|
[43] |
Guowei G et al 2018 Trans. China Electr. Soc. 33 111 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.171592
|
[1] | Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb |
[2] | Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d |
[3] | Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a |
[4] | Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf |
[5] | Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2 |
[6] | Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838 |
[7] | Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001 |
[8] | TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12 |
[9] | LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05 |
[10] | LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01 |