Processing math: 0%
Advanced Search+
Shuai JIANG, Weikang TANG, Lai WEI, Tong LIU, Haiwen XU, Zhengxiong WANG. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055101. DOI: 10.1088/2058-6272/ac500b
Citation: Shuai JIANG, Weikang TANG, Lai WEI, Tong LIU, Haiwen XU, Zhengxiong WANG. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(5): 055101. DOI: 10.1088/2058-6272/ac500b

Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas

More Information
  • Author Bio:

    Zhengxiong WANG, E-mail: zxwang@dlut.edu.cn

  • Received Date: November 30, 2021
  • Revised Date: January 04, 2022
  • Accepted Date: January 27, 2022
  • Available Online: December 11, 2023
  • Published Date: April 12, 2022
  • The effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes are investigated based on a set of reduced magnetohydrodynamic equations. It is found that the radiation can reduce the pressure near the rational surface. During the nonlinear evolution, the magnitude of perturbed bootstrap current is drastically enhanced in the presence of the radiation. Besides, the radiation can increase the growth rate of the magnetic islands by diminishing the pressure, such that the magnetic islands do not saturate compared with that without radiation. On the other hand, with the increase of the ratio of parallel to perpendicular transport coefficient χ|| the reduction of pressure can further increase the growth rate of magnetic islands in the presence of plasma radiation. Finally, the mechanisms of the destabilizing effects driven by the radiation are discussed in detail as well.

  • The authors thank Dr Huishan CAI for stimulating discussions on this work. This work is supported by the National Magnetic Confinement Fusion Energy R & D Program of China (Nos. 2019YFE03090300 and 2017YFE0301100), National Natural Science Foundation of China (Nos. 11925501 and 12075048), the Fundamental Research Funds for the Central Universities (Nos. DUT21GJ204 and DUT21LK28).

  • [1]
    Kikuchi M and Azumi M 2012 Rev. Mod. Phys. 84 1807 doi: 10.1103/RevModPhys.84.1807
    [2]
    Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 doi: 10.1063/1.1706761
    [3]
    Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054 doi: 10.1063/1.1694467
    [4]
    Hender T C et al 2007 Nucl. Fusion 47 S128 doi: 10.1088/0029-5515/47/6/S03
    [5]
    Ren Z H et al 2020 Plasma Sci. Technol. 22 065102 doi: 10.1088/2058-6272/ab77d4
    [6]
    Li D, Yang W and Cai H S 2018 Plasma Sci. Technol. 20 094002 doi: 10.1088/2058-6272/aabde4
    [7]
    Wang H H et al 2015 Plasma Sci. Technol. 17 539 doi: 10.1088/1009-0630/17/7/03
    [8]
    Zhang X X et al 2020 Plasma Phys. Control. Fusion 62 085010 doi: 10.1088/1361-6587/ab9a11
    [9]
    Wang X Q et al 2021 Nucl. Fusion 61 036021 doi: 10.1088/1741-4326/abd3ec
    [10]
    Zhang W, Ma Z W and Zhang H W 2021 Nucl. Fusion 61 126052 doi: 10.1088/1741-4326/ac3365
    [11]
    Tang W K et al 2019 Plasma Sci. Technol. 21 065103 doi: 10.1088/2058-6272/ab0a18
    [12]
    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27 doi: 10.1088/0741-3335/44/8/201
    [13]
    Hender T C et al 2004 Nucl. Fusion 44 788 doi: 10.1088/0029-5515/44/7/010
    [14]
    Chang Z et al 1995 Phys. Rev. Lett. 74 4663 doi: 10.1103/PhysRevLett.74.4663
    [15]
    Tang W K et al 2020 Nucl. Fusion 60 026015 doi: 10.1088/1741-4326/ab61d5
    [16]
    Wei L and Wang Z X 2014 Nucl. Fusion 54 043015 doi: 10.1088/0029-5515/54/4/043015
    [17]
    Wei L et al 2016 Nucl. Fusion 56 106015 doi: 10.1088/0029-5515/56/10/106015
    [18]
    Wang J L et al 2017 Nucl. Fusion 57 046007 doi: 10.1088/1741-4326/aa598c
    [19]
    Liu T et al 2021 Chin. Phys. Lett. 38 045204 doi: 10.1088/0256-307X/38/4/045204
    [20]
    Sato M and Wakatani M 2005 Nucl. Fusion 45 143 doi: 10.1088/0029-5515/45/2/008
    [21]
    Fietz S et al 2013 Plasma Phys. Control. Fusion 55 085010 doi: 10.1088/0741-3335/55/8/085010
    [22]
    Buttery R J et al 2008 Phys. Plasmas 15 056115 doi: 10.1063/1.2894215
    [23]
    Hegna C C and Callen J D 1992 Phys. Plasmas 4 1855 doi: 10.1063/1.860039
    [24]
    Xu H W et al 2020 Plasma Phys. Control. Fusion 62 105009 doi: 10.1088/1361-6587/aba768
    [25]
    Stacey W M 2012 Fusion Plasma Physics (Weinheim: Wiley)
    [26]
    Wesson J A et al 1989 Nucl. Fusion 29 641 doi: 10.1088/0029-5515/29/4/009
    [27]
    Gates D A and Delgado-Aparicio L 2012 Phys. Rev. Lett. 108 165004 doi: 10.1103/PhysRevLett.108.165004
    [28]
    Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526 doi: 10.1038/s41586-019-1116-4
    [29]
    Lehnen M et al 2015 J. Nucl. Mater. 463 39 doi: 10.1016/j.jnucmat.2014.10.075
    [30]
    Suttrop W et al 1997 Nucl. Fusion 37 119 doi: 10.1088/0029-5515/37/1/I09
    [31]
    Teng Q et al 2016 Nucl. Fusion 56 106001 doi: 10.1088/0029-5515/56/10/106001
    [32]
    Teng Q et al 2018 Nucl. Fusion 58 106024 doi: 10.1088/1741-4326/aad7c9
    [33]
    Perkins F W and Hulse R A 1985 Phys. Fluids 28 1837 doi: 10.1063/1.864927
    [34]
    Xu L Q et al 2017 Nucl. Fusion 57 126002 doi: 10.1088/1741-4326/aa7f91
    [35]
    White R B, Monticello D A and Rosenbluth M N 1977 Phys. Rev. Lett. 39 1618 doi: 10.1103/PhysRevLett.39.1618
    [36]
    Hayakawa S, Hokkyō N and Tsuneto T 1958 Proc. Second UN Internatl. Conf. On Peaceful Uses Atomic Energy 32, p 385
    [37]
    Sang C F et al 2021 Nucl. Fusion 61 066004 doi: 10.1088/1741-4326/abecc9
    [38]
    Chen Y P et al 2020 Nucl. Mater. Energy 25 100833 doi: 10.1016/j.nme.2020.100833
    [39]
    Aymar R, Barabaschi P and Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519 doi: 10.1088/0741-3335/44/5/304
    [40]
    White R B, Gates D A and Brennan D P 2015 Phys. Plasmas 22 022514 doi: 10.1063/1.4913433
  • Related Articles

    [1]Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb
    [2]Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d
    [3]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [4]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [5]Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2
    [6]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [9]LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05
    [10]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01

Catalog

    Figures(8)

    Article views (128) PDF downloads (68) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return