Citation: | Jia HUANG, Xiang HAN, Kaixuan YE, Tao ZHANG, Fei WEN, Mingfu WU, Kangning GENG, Gongshun LI, Fubin ZHONG, Yukai LIU, Haoming XIANG, Shuqi YANG, Shoubiao ZHANG, Xiang GAO, Ge ZHUANG, the EAST Team. Feasibility of applying the lower cut-off frequency for the density radial coverage extension in EAST reflectometry measurement[J]. Plasma Science and Technology, 2022, 24(5): 055104. DOI: 10.1088/2058-6272/ac52e9 |
The extraordinary mode (X-mode) lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement, which is a trade-off between extreme plasma parameters and the accessible probing frequency. In contemporary experiments, the lower cut-off frequency can be identified at the probing frequency below the electron cyclotron frequency (fce) under certain plasma conditions. We provide here, for the first time, the experimental validation of the use of the lower cut-off frequency for the density profiles via the reflectometry measurement on EAST. The corresponding group delay of the lower cut-off frequency evolves continuously with the upper one, revealing a reasonable radial coverage extension of reflectometry measurement toward the plasma core. It is concluded that the lower cut-off frequency can be used as a supplement to the upper one in the density profile inversion process, which is of particular interest in the high magnetic field and/or density discharge to extend the radial coverage of reflectometry measurement.
The authors wish to acknowledge Dr. S. X. Wang for helping to analyze the POINT data. This work has been supported by the National Key R & D Program of China (Nos. 2017YFE0301205 and 2019YFE03040002), National Natural Science Foundation of China (Nos. 11875289, 11975271, 11805136, 12075284, and 12175277) and China Postdoctoral Science Foundation (No. 2021M703256).
[1] |
Greenwald M et al 1988 Nucl. Fusion 28 2199 doi: 10.1088/0029-5515/28/12/009
|
[2] |
Lang P T et al 2018 Nucl. Fusion 58 036001 doi: 10.1088/1741-4326/aaa339
|
[3] |
Zeng L et al 2001 Rev. Sci. Instrum. 72 320 doi: 10.1063/1.1319607
|
[4] |
Wang G et al 2003 Rev. Sci. Instrum. 74 1525 doi: 10.1063/1.1527251
|
[5] |
Sips A C C and Kramer G J 1993 Plasma Phys. Control. Fusion 35 743 doi: 10.1088/0741-3335/35/6/008
|
[6] |
Sabot R et al 2006 Nucl. Fusion 46 S685 doi: 10.1088/0029-5515/46/9/S04
|
[7] |
Clairet F et al 2003 Rev. Sci. Instrum. 74 1481 doi: 10.1063/1.1530359
|
[8] |
Silva A et al 1996 Rev. Sci. Instrum. 67 4138 doi: 10.1063/1.1147517
|
[9] |
Tokuzawa T et al 2001 Rev. Sci. Instrum. 72 328 doi: 10.1063/1.1326900
|
[10] |
Xiao W W et al 2010 Phys. Rev. Lett. 104 215001 doi: 10.1103/PhysRevLett.104.215001
|
[11] |
Manso M et al 1998 Plasma Phys. Control. Fusion 40 747 doi: 10.1088/0741-3335/40/5/036
|
[12] |
Doyle E J et al 2001 Plasma Phys. Control. Fusion 43 A95 doi: 10.1088/0741-3335/43/12A/307
|
[13] |
Vayakis G et al 1997 Rev. Sci. Instrum 68 435 doi: 10.1063/1.1148220
|
[14] |
Vayakis G et al 2006 Nucl. Fusion 46 S836 doi: 10.1088/0029-5515/46/9/s20
|
[15] |
Aguiam D E et al 2017 Fusion Eng. Des. 123 816 doi: 10.1016/j.fusengdes.2017.04.019
|
[16] |
Shelukhin D A et al 2018 Rev. Sci. Instrum. 89 094708 doi: 10.1063/1.5039151
|
[17] |
Varela P, Manso M and (ASDEX Upgrade Team) 2012 Rev. Sci. Instrum. 83 10E315 doi: 10.1063/1.4732805
|
[18] |
Lau C et al 2014 Rev. Sci. Instrum. 85 11D815 doi: 10.1063/1.4889739
|
[19] |
Wang G et al 2004 Rev. Sci. Instrum. 75 3800 doi: 10.1063/1.1788849
|
[20] |
Qu H et al 2015 Plasma Sci. Technol. 17 985 doi: 10.1088/1009-0630/17/12/01
|
[21] |
Wang Y M et al 2013 Fusion Eng. Des. 88 2950 doi: 10.1016/j.fusengdes.2013.06.004
|
[22] |
Zhang S B et al 2014 Plasma Sci. Technol. 16 402 doi: 10.1088/1009-0630/16/4/02
|
[23] |
Gao X et al 2015 Nucl. Fusion 55 083015 doi: 10.1088/0029-5515/55/8/083015
|
[24] |
Huang J et al 2020 Nucl. Fusion 60 082008 doi: 10.1088/1741-4326/ab945b
|
[25] |
Mazzucato E et al 1998 Rev. Sci. Instrum. 69 2201 doi: 10.1063/1.1149121
|
[26] |
Wang Y M et al 2019 Fusion Eng. Des. 148 111286 doi: 10.1016/j.fusengdes.2019.111286
|
[27] |
Zou Z Y et al 2014 Rev. Sci. Instrum. 85 11D409 doi: 10.1063/1.4890400
|
[1] | Jian YANG (杨健), Angjian WU (吴昂键), Xiaodong LI (李晓东), Yang LIU (刘阳), Fengsen ZHU (朱凤森), Zhiliang CHEN (陈志良), Jianhua YAN (严建华), Ruijuan CHEN (陈瑞娟), Wangjun SHEN (沈望俊). Experimental and simulation investigation of electrical and plasma parameters in a low pressure inductively coupled argon plasma[J]. Plasma Science and Technology, 2017, 19(11): 115402. DOI: 10.1088/2058-6272/aa885f |
[2] | Yunhai HONG (洪运海), Chengxun YUAN (袁承勋), Jieshu JIA (贾洁姝), Ruilin GAO (高瑞林), Ying WANG (王莹), Zhongxiang ZHOU (周忠祥), Xiaoou WANG (王晓鸥), Hui LI (李辉), Jian WU (吴建). Propagation characteristics of microwaves in dusty plasmas with multi-collisions[J]. Plasma Science and Technology, 2017, 19(5): 55301-055301. DOI: 10.1088/2058-6272/aa5b29 |
[3] | WU Zhonghang (吴忠航), LIANG Rongqing (梁荣庆), Masaaki NAGATSU (永津雅章), CHANG Xijiang (昌锡江). The Characteristics of Columniform Surface Wave Plasma Excited Around a Quartz Rod by 2.45 GHz Microwaves[J]. Plasma Science and Technology, 2016, 18(10): 987-991. DOI: 10.1088/1009-0630/18/10/04 |
[4] | ZHANG Lin (张林), OUYANG Jiting (欧阳吉庭). Microwaves Scattering by Underdense Inhomogeneous Plasma Column[J]. Plasma Science and Technology, 2016, 18(3): 266-272. DOI: 10.1088/1009-0630/18/3/09 |
[5] | WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10 |
[6] | HUO Wenqing (霍文青), GUO Shijie (郭世杰), DING Liang (丁亮), XU Yuemin (徐跃民). Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet[J]. Plasma Science and Technology, 2013, 15(10): 979-984. DOI: 10.1088/1009-0630/15/10/04 |
[7] | LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17 |
[8] | YANG Fei (杨飞), RONG Mingzhe (荣命哲), WU Yi (吴翊), SUN Hao (孙昊), MA Ruiguang (马瑞光), NIU Chunping (纽春萍). Numerical Simulation of the Eddy Current Effects in the Arc Splitting Process[J]. Plasma Science and Technology, 2012, 14(11): 974-979. DOI: 10.1088/1009-0630/14/11/05 |
[9] | WANG Lijun (王立军), YANG Dingge (杨鼎革), JIA Shenli (贾申利), WANG Liuhuo (王流火), SHI Zongqian (史宗谦). Vacuum Arc Characteristics Simulation at Different Moments Under Power-Frequency Current[J]. Plasma Science and Technology, 2012, 14(3): 227-234. DOI: 10.1088/1009-0630/14/3/08 |
[10] | DING Liang (丁亮), HUO Wenqing (霍文青), YANG Xinjie (杨新杰), XU Yuemin (徐跃民). The Interaction of C-Band Microwaves with Large Plasma Sheets[J]. Plasma Science and Technology, 2012, 14(1): 9-13. DOI: 10.1088/1009-0630/14/1/03 |