Advanced Search+
Houpu WU, Xiubo TIAN, Linlin ZHENG, Chunzhi GONG, Peng LUO. Improvement of plasma uniformity and mechanical properties of Cr films deposited on the inner surface of a tube by an auxiliary anode near the tube tail[J]. Plasma Science and Technology, 2022, 24(5): 054008. DOI: 10.1088/2058-6272/ac57fd
Citation: Houpu WU, Xiubo TIAN, Linlin ZHENG, Chunzhi GONG, Peng LUO. Improvement of plasma uniformity and mechanical properties of Cr films deposited on the inner surface of a tube by an auxiliary anode near the tube tail[J]. Plasma Science and Technology, 2022, 24(5): 054008. DOI: 10.1088/2058-6272/ac57fd

Improvement of plasma uniformity and mechanical properties of Cr films deposited on the inner surface of a tube by an auxiliary anode near the tube tail

More Information
  • Corresponding author:

    Xiubo TIAN, E-mail: xiubotian@163.com

  • Received Date: September 06, 2021
  • Revised Date: February 20, 2022
  • Accepted Date: February 22, 2022
  • Available Online: December 11, 2023
  • Published Date: May 16, 2022
  • In order to improve the length of plasma in a whole tube and mechanical properties of Cr films deposited on the inner surface of the tube, a high-power impulse magnetron sputtering coating method with a planar cathode target and auxiliary anode was proposed. The auxiliary anode was placed near the tube tail to attract plasma into the inner part of the tube. Cr films were deposited on the inner wall of a 20# carbon steel tube with a diameter of 40 mm and length of 120 mm. The influence of auxiliary anode voltage on the discharge characteristics of the Cr target, and the structure and mechanical properties of Cr films deposited on the inner surface of the tube were explored. With higher auxiliary anode voltage, an increase in substrate current was observed, especially in the tube tail. The thickness uniformity, compactness, hardness and H/E ratios of the Cr films deposited on the inner surface of the tube increased with the increase in auxiliary anode voltage. The Cr films deposited with auxiliary anode voltage of 60 V exhibited the highest hardness of 9.6 GPa and the lowest friction coefficient of 0.68.

  • The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Nos. 12075071 and 11875119) and Heilongjiang Touyan Innovation Team Program (HITTY-20190013).

  • [1]
    Yang Z Z et al 2020 Int. J. Mach. Tools Manuf. 152 103530 doi: 10.1016/j.ijmachtools.2020.103530
    [2]
    Vigilante G N and Mulligan C P 2006 Mater. Manuf. Process. 21 621 doi: 10.1080/10426910600609429
    [3]
    Zhang Y L et al 2016 Ceram. Int. 42 18657 doi: 10.1016/j.ceramint.2016.09.003
    [4]
    Chonan Y et al 2006 Mater. Trans. 47 1417 doi: 10.2320/matertrans.47.1417
    [5]
    Equbal A et al 2017 Int. J. Technol. 8 930 doi: 10.14716/ijtech.v8i5.875
    [6]
    Yuan Y et al 2018 Plasma Sci. Technol. 20 065501 doi: 10.1088/2058-6272/aa9e48
    [7]
    Helmersson U et al 2006 Thin Solid Films 513 1 doi: 10.1016/j.tsf.2006.03.033
    [8]
    Cui J T et al 2007 Surf. Coat. Technol. 201 6651 doi: 10.1016/j.surfcoat.2006.09.087
    [9]
    Hagedorn D et al 2008 Surf. Coat. Technol. 203 632 doi: 10.1016/j.surfcoat.2008.06.166
    [10]
    Kaune G, Hagedorn D and Löffler F 2016 Surf. Coat. Technol. 308 57 doi: 10.1016/j.surfcoat.2016.07.092
    [11]
    Löffler F and Siewert C 2004 Surf. Coat. Technol. 177–178 355 doi: 10.1016/j.surfcoat.2003.09.026
    [12]
    Shimizu T et al 2017 Thin Solid Films 624 189 doi: 10.1016/j.tsf.2016.09.041
    [13]
    Li C W et al 2016 Vacuum 133 98 doi: 10.1016/j.vacuum.2016.08.020
    [14]
    Burton A W et al 2009 Microporous Mesoporous Mater. 117 75 doi: 10.1016/j.micromeso.2008.06.010
    [15]
    Ibrahim K et al 2018 J. Alloys Compd. 750 451 doi: 10.1016/j.jallcom.2018.04.012
    [16]
    Anders A et al 2007 J. Appl. Phys. 102 113303 doi: 10.1063/1.2817812
    [17]
    Wu Z Z et al 2016 Surf. Coat. Technol. 306 319 doi: 10.1016/j.surfcoat.2016.07.013
    [18]
    Hsiao Y C et al 2013 Thin Solid Films 549 281 doi: 10.1016/j.tsf.2013.08.059
    [19]
    Palmucci M et al 2013 J. Phys. D: Appl. Phys. 46 215201 doi: 10.1088/0022-3727/46/21/215201
    [20]
    Wu Z Z et al 2014 Acta Phys. Sin. 63 175201(in Chinese) doi: 10.7498/aps.63.175201
    [21]
    Barker P M et al 2014 Surf. Coat. Technol. 258 631 doi: 10.1016/j.surfcoat.2014.08.025
    [22]
    Konstantinidis S et al 2006 Appl. Phys. Lett. 88 021501 doi: 10.1063/1.2162671
    [23]
    Lin J L et al 2009 Thin Solid Films 518 1566 doi: 10.1016/j.tsf.2009.09.118
    [24]
    Li C W et al 2016 Rev. Sci. Instrum. 87 083507 doi: 10.1063/1.4960671
    [25]
    Barker P M et al 2013 J. Vac. Sci. Technol. A 31 060604 doi: 10.1116/1.4819296
    [26]
    Li C W et al 2017 Vacuum 144 125 doi: 10.1016/j.vacuum.2017.07.032
    [27]
    Liu H Y et al 2019 Int. J. Mod. Phys. B 33 1950329 doi: 10.1142/S0217979219503296
    [28]
    Guimaraes M C R et al 2018 Surf. Coat. Technol. 340 112 doi: 10.1016/j.surfcoat.2018.02.028
    [29]
    Ferreira F et al 2016 Thin Solid Films 619 250 doi: 10.1016/j.tsf.2016.10.054
    [30]
    Ganesan R et al 2018 Surf. Coat. Technol. 352 671 doi: 10.1016/j.surfcoat.2018.02.076
    [31]
    Wu H P et al 2019 Surf. Coat. Technol. 374 383 doi: 10.1016/j.surfcoat.2019.06.016
    [32]
    Karuppasamy A and Subrahmanyam A 2007 Mater. Lett. 61 1256 doi: 10.1016/j.matlet.2006.07.014
    [33]
    Lin J et al 2011 J. Phys. D: Appl. Phys. 44 425305 doi: 10.1088/0022-3727/44/42/425305
    [34]
    Lin J L et al 2010 Surf. Coat. Technol. 204 2230 doi: 10.1016/j.surfcoat.2009.12.013
    [35]
    Olaya J J et al 2005 Thin Solid Films 474 119 doi: 10.1016/j.tsf.2004.08.067
    [36]
    Leyland A and Matthews A 2000 Wear 246 1 doi: 10.1016/S0043-1648(00)00488-9
    [37]
    Musil J and Jirout M 2007 Surf. Coat. Technol. 201 5148 doi: 10.1016/j.surfcoat.2006.07.020
    [38]
    Lin J L et al 2011 Surf. Coat. Technol. 205 3226 doi: 10.1016/j.surfcoat.2010.11.039
  • Related Articles

    [1]Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb
    [2]Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d
    [3]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [4]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [5]Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2
    [6]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [9]LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05
    [10]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01

Catalog

    Figures(17)  /  Tables(1)

    Article views (101) PDF downloads (59) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return