Processing math: 100%
Advanced Search+
Jixing YANG, Guoyong FU, Wei SHEN, Minyou YE. Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(6): 065101. DOI: 10.1088/2058-6272/ac5972
Citation: Jixing YANG, Guoyong FU, Wei SHEN, Minyou YE. Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(6): 065101. DOI: 10.1088/2058-6272/ac5972

Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas

More Information
  • Corresponding author:

    Guoyong FU, E-mail: gyfu@zju.edu.cn

    Minyou YE, E-mail: yemy@ustc.edu.cn

  • Received Date: November 09, 2021
  • Revised Date: February 24, 2022
  • Accepted Date: February 28, 2022
  • Available Online: December 12, 2023
  • Published Date: May 18, 2022
  • A linear simulation study of energetic passing particle-driven low-frequency fishbone instability in tokamak plasmas has been carried out using the global kinetic-MHD (magnetohydrodynamics) hybrid code M3D-K. This work is focused on the interaction of energetic passing beam ions and n=1 mode with a monotonic safety factor q profile and q0<1. Specifically, the stability and mode frequency as well as mode structure of the n=1 mode are calculated for scans of parameter values of beam ion beta, beam ion injection energy, beam ion orbit width, beam ion beta profile, as well as background plasma beta. The excited modes are identified as a low-frequency fishbone with the corresponding resonance of ωϕ+ωθ=ω, where ωϕ is the beam ion toroidal transit frequency and ωθ is the beam ion poloidal transit frequency. The simulated mode frequency is approximately proportional to the beam ion injection energy and beam ion orbit width. The mode structure is similar to that of internal kink mode. These simulation results are similar to the analytic theory of Yu et al.

  • We thank Dr Feng Wang for useful discussions and for help with the use of the M3D-K code. This work is supported by the National MCF Energy R & D Program of China (Nos. 2019YFE03030004 and 2019YFE03050001) and National Natural Science Foundation of China (Nos. 11975232 and 11975270). Numerical simulations were carried out using the CFETR Integration Design Platform (CIDP) with the support of the Supercomputing Center of the University of Science and Technology of China. Part of the numerical simulations were carried out using the Qilin supercomputer #2 of the Institute for Fusion Theory and Simulation, Zhejiang University.

  • [1]
    McGuire K et al 1983 Phys. Rev. Lett. 50 891 doi: 10.1103/PhysRevLett.50.891
    [2]
    Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
    [3]
    Coppi B and Porcelli F 1986 Phys. Rev. Lett. 57 2272 doi: 10.1103/PhysRevLett.57.2272
    [4]
    Betti R and Freidberg J P 1993 Phys. Rev. Lett. 70 3428 doi: 10.1103/PhysRevLett.70.3428
    [5]
    Yu L M et al 2019 Nucl. Fusion 59 086016 doi: 10.1088/1741-4326/ab22dd
    [6]
    Wang S J 2001 Phys. Rev. Lett. 86 5286 doi: 10.1103/PhysRevLett.86.5286
    [7]
    Fu G Y et al 2006 Phys. Plasmas 13 052517 doi: 10.1063/1.2203604
    [8]
    Wang F et al 2013 Phys. Plasmas 20 102506 doi: 10.1063/1.4824739
    [9]
    Shen W et al 2015 Phys. Plasmas 22 042510 doi: 10.1063/1.4917341
    [10]
    Shen W et al 2017 Nucl. Fusion 57 116035 doi: 10.1088/1741-4326/aa7f9c
    [11]
    Glozman I, Johnson C E and Jiang H W 1995 Phys. Rev. Lett. 74 594 doi: 10.1103/PhysRevLett.74.594
    [12]
    Lang J Y, Fu G Y and Chen Y 2010 Phys. Plasmas 17 042309 doi: 10.1063/1.3394702
    [13]
    Liu D et al 2015 Phys. Plasmas 22 042509 doi: 10.1063/1.4917523
    [14]
    Zhu X L, Wang F and Wang Z X 2020 Chin. Phys. B 29 025201 doi: 10.1088/1674-1056/ab610e
    [15]
    Cai H S and Fu G Y 2012 Phys. Plasmas 19 072506 doi: 10.1063/1.4736956
    [16]
    Hirshman S and Betancourt O 1991 J. Comput. Phys. 96 99 doi: 10.1016/0021-9991(91)90267-O
    [17]
    Porcelli F et al 1994 Phys. Plasmas 1 470 doi: 10.1063/1.870792
  • Related Articles

    [1]Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13
    [2]WEI Zian (卫子安), MA Jinxiu (马锦秀), LI Yuanrui (李元瑞), SUN Yan (孙彦), JIANG Zhengqi (江正琦). Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device[J]. Plasma Science and Technology, 2016, 18(11): 1076-1080. DOI: 10.1088/1009-0630/18/11/04
    [3]LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
    [4]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [5]WANG Qing(王庆), BA Dechun(巴德纯), MING Yue(明悦), XU Lin(徐林), GUO Deyu(郭德宇). Low Temperature Nitriding of 304 Austenitic Stainless Steel Using RF-ICP Method: the Role of Ion Beam Flux Density[J]. Plasma Science and Technology, 2014, 16(10): 960-963. DOI: 10.1088/1009-0630/16/10/10
    [6]XIE Yahong(谢亚红), HU Chundong(胡纯栋), LIU Sheng(刘胜), JIANG Caichao(蒋才超), LIANG Lizhen(梁立振), LI Jun(李军), XIE Yuanlai(谢远来), LIU Zhimin(刘智民). The Arc Regulation Characteristics of the High-Current Ion Source for the EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2014, 16(4): 429-432. DOI: 10.1088/1009-0630/16/4/24
    [7]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [8]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [9]HU Chundong(胡纯栋), XIE Yahong(谢亚红), NBI team. The Development of a Megawatt-Level High Current Ion Source[J]. Plasma Science and Technology, 2012, 14(1): 75-77. DOI: 10.1088/1009-0630/14/1/16
    [10]ZHU Xueguang(朱学光). Influence of the Phase of the Antenna Current Standing Wave on the Power Flux in Ion Cyclotron Heating[J]. Plasma Science and Technology, 2010, 12(5): 543-546.

Catalog

    Figures(12)  /  Tables(1)

    Article views (96) PDF downloads (77) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return