Citation: | Jiawei ZHANG, Zelei ZHANG, T MATSUMOTO, Qingqing GAO, Yuanye LIU, K NISHIJIMA, Yifan LIU. Influence of shape effect on dynamic surface charge transport mechanism of cellular electret after corona discharge[J]. Plasma Science and Technology, 2022, 24(4): 044009. DOI: 10.1088/2058-6272/ac5973 |
Surface charge accumulation and transport on cellular polypropylene play an important role in nanogenerators, which could have a potential impact on energy harvesting and wearable devices for zero carbon energy systems and the internet of things. Different shapes have different charge accumulation and decay characteristics of the polymer. Therefore, we studied the influence of the sample’s shape on the surface charge decay by experiment and modeling. The surface potential of square and circular cellular polypropylene was measured by a two-dimensional surface potential measurement system with electrostatic capacitive probe. The experimental result shows that the surface potential distribution of the square sample dissipates non-uniformly from the bell shape to a one-sided collapsed shape, while that of the circular sample dissipates uniformly from the bell shape to the crater-like shape. Moreover, the simulated results of the initial surface potential distributions of the square and circular cellular polypropylene are consistent with the experimental results. The investigation demonstrates that the charge transport process is correlated with the shape of the sample, which provides significant reference for designing electret material used for highly efficient nanogenerators.
This work was supported by National Natural Science Foundation of China (NSFC) (Nos. 52050410346, 51877031, 62061136009), the Ministry of Science and Technology (No. QNJ2021041001), the high-level talents plan of Shaanxi province, the ‘Belt and Road Initiative’ Overseas Expertise Introduction Center for Smart Energy and Reliability of Transmission and Distribution Equipment of Shaanxi Province, and the Advanced Foreign Researcher Promotion Program of Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and Fukuoka University. In addition, we thank Mr Y Izawa for his suggestions and help in the experiment.
[1] |
Luo J J, Gao W C and Wang Z L 2021 Adv. Mater. 33 2004178 doi: 10.1002/adma.202004178
|
[2] |
Lu L J et al 2020 Nano Energy 78 105251 doi: 10.1016/j.nanoen.2020.105251
|
[3] |
Yang L et al 2021 Micromachines 12 666 doi: 10.3390/mi12101218
|
[4] |
Luo N et al 2020 ACS Appl. Mater. Interfaces 12 30390 doi: 10.1021/acsami.0c07037
|
[5] |
Zhao Z H et al 2020 Nat. Commun. 11 6186 doi: 10.1038/s41467-020-20045-y
|
[6] |
Tcho I W et al 2017 Nano Energy 42 34 doi: 10.1016/j.nanoen.2017.10.037
|
[7] |
Zhao Z et al 2021 Mater. Today Energy 20 100690 doi: 10.1016/j.mtener.2021.100690
|
[8] |
Que R H et al 2011 Nano Lett. 11 4870 doi: 10.1021/nl2027266
|
[9] |
Song W Z et al 2019 Nano Energy 63 103878 doi: 10.1016/j.nanoen.2019.103878
|
[10] |
Li C Y et al 2021 J. Phys. D: Appl. Phys. 54 015308 doi: 10.1088/1361-6463/abb38f
|
[11] |
Kumada A et al 2003 J. Electrostat. 58 45 doi: 10.1016/S0304-3886(02)00189-4
|
[12] |
Zhang B Y et al 2017 IEEE Trans. Instrum. Meas. 66 3316 doi: 10.1109/TIM.2017.2730981
|
[13] |
Davies D K 1967 J. Sci. Instrum. 44 521 doi: 10.1088/0950-7671/44/7/308
|
[14] |
Rouagdia K et al 2015 J. Electrostat. 78 17 doi: 10.1016/j.elstat.2015.09.004
|
[15] |
Viraneva A et al 2012 IEEE Trans. Dielect. Elect. Insul. 19 1132 doi: 10.1109/TDEI.2012.6259980
|
[16] |
Mohamad A et al 2015 IEEE Trans. Dielect. Elect. Insul. 22 101 doi: 10.1109/TDEI.2014.004574
|
[17] |
Kindersberger J and Lederle C 2008 IEEE Trans. Dielect. Elect. Insul. 15 949 doi: 10.1109/TDEI.2008.4591215
|
[18] |
Kindersberger J and Lederle C 2008 IEEE Trans. Dielect. Elect. Insul. 15 941 doi: 10.1109/TDEI.2008.4591214
|
[19] |
Mu H B et al 2011 IEEE Trans. Dielect. Elect. Insul. 18 485 doi: 10.1109/TDEI.2011.5739453
|
[20] |
Matsumoto T et al 2014 IEEJ Trans. Power Energy 134 203 doi: 10.1541/ieejpes.134.203
|
[21] |
Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441 doi: 10.1088/0022-3727/30/3/017
|
[22] |
Liu X H et al 2012 Chin. Phys. B 21 075201 doi: 10.1088/1674-1056/21/7/075201
|
[23] |
Li G et al 2018 Plasma Sci. Technol. 20 014004 doi: 10.1088/2058-6272/aa8f3c
|
[24] |
Zhang J W, Li T H and Zhang W 2020 Surf. Rev. Lett. 27 1950230 doi: 10.1142/S0218625X19502305
|
[25] |
Zhang J W et al 2020 ACS Appl. Energy Mater. 3 8946 doi: 10.1021/acsaem.0c01404
|
[26] |
Baum E A, Lewis T J and Toomer R 1978 J. Phys. D: Appl. Phys. 11 963 doi: 10.1088/0022-3727/11/6/016
|
[27] |
Blaise G 2001 J. Electrostat. 50 69 doi: 10.1016/S0304-3886(00)00027-9
|
[28] |
Meunier M and Quirke N 2000 J. Chem. Phys. 113 369 doi: 10.1063/1.481802
|
[29] |
Boufayed F et al 2006 J. Appl. Phys. 100 104105 doi: 10.1063/1.2375010
|
[30] |
Teyssedre G and Laurent C 2005 IEEE Trans. Dielect. Elect. Insul. 12 857 doi: 10.1109/TDEI.2005.1522182
|
[31] |
Kumara S, Serdyuk Y V and Gubanski S M 2011 IEEE Trans. Dielect. Elect. Insul. 18 1779 doi: 10.1109/TDEI.2011.6032850
|
[32] |
Pandiyaraj K N et al 2009 Appl. Surf. Sci. 255 3965 doi: 10.1016/j.apsusc.2008.10.090
|
[33] |
Shao T et al 2017 IEEE Trans. Dielect. Elect. Insul. 24 1557 doi: 10.1109/TDEI.2017.006321
|
[34] |
Jestin P et al 1986 J. Phys. D: Appl. Phys. 19 L121 doi: 10.1088/0022-3727/19/6/007
|
[35] |
Moudoud M et al 2013 Eur. Phys. J. Appl. Phys. 64 30201 doi: 10.1051/epjap/2013130216
|
[36] |
Zhang J W et al 2020 IEEE Trans. Dielect. Elect. Insul 27 542 doi: 10.1109/TDEI.2020.008620
|
[1] | Weiji LIU, Youjian ZHANG, Xiaohua ZHU, Yunxu LUO. The influence of pore characteristics on rock fragmentation mechanism by high-voltage electric pulse[J]. Plasma Science and Technology, 2023, 25(5): 055502. DOI: 10.1088/2058-6272/acab42 |
[2] | Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Fei MA (马飞), Zhengwei XING (邢政伟), Zheng LIU (刘征), Guofeng LI (李国锋). Direct impact characteristics of magnesite fragmentation by pulsed discharge in water[J]. Plasma Science and Technology, 2019, 21(7): 74011-074011. DOI: 10.1088/2058-6272/ab024d |
[3] | Shuqun WU (吴淑群), Xueyuan LIU (刘雪原), Guowang HUANG (黄国旺), Chang LIU (刘畅), Weijie BIAN (卞伟杰), Chaohai ZHANG (张潮海). Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 74007-074007. DOI: 10.1088/2058-6272/ab00b0 |
[4] | Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93 |
[5] | QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13 |
[6] | LIU Yan (刘燕), YANG Li (杨丽), YANG Gang (杨刚), ZHANG Yanzong (张延宗), ZHANG Xiaohong (张小洪), DENG Shihuai (邓仕槐). Degradation of Dye Wastewater by Pulsed High-Voltage Discharge Combined with Spent Tea Leaves[J]. Plasma Science and Technology, 2014, 16(12): 1135-1140. DOI: 10.1088/1009-0630/16/12/09 |
[7] | WANG Lei(王磊), HUANG Yiyun(黄懿赟), ZHAO Yanping(赵燕平), ZHANG Jian(张健), YANG Lei(杨磊), GUO Wenjun(郭文军). Structure Design and Analysis of High-Voltage Power Supply for ECRH[J]. Plasma Science and Technology, 2014, 16(11): 1079-1082. DOI: 10.1088/1009-0630/16/11/15 |
[8] | GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05 |
[9] | GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09 |
[10] | LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11 |
1. | Salewski, M., Spong, D.A., Aleynikov, P. et al. Energetic particle physics: Chapter 7 of the special issue: on the path to tokamak burning plasma operation. Nuclear Fusion, 2025, 65(4): 043002. DOI:10.1088/1741-4326/adb763 |
2. | Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535 |
3. | Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3 |
4. | Ren, Z., Wang, F., Cai, H. et al. Influence of toroidal rotation on nonlinear evolution of tearing mode in tokamak plasmas. Plasma Physics and Controlled Fusion, 2023, 65(1): 015007. DOI:10.1088/1361-6587/aca4f4 |
5. | Cai, H., Li, D. Recent progress in the interaction between energetic particles and tearing modes. National Science Review, 2022, 9(11): nwac019. DOI:10.1093/nsr/nwac019 |
6. | Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b |
7. | Liu, T., Wei, L., Wang, F. et al. Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas. Chinese Physics Letters, 2021, 38(4): 045204. DOI:10.1088/0256-307X/38/4/045204 |