Advanced Search+
Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Fei MA (马飞), Zhengwei XING (邢政伟), Zheng LIU (刘征), Guofeng LI (李国锋). Direct impact characteristics of magnesite fragmentation by pulsed discharge in water[J]. Plasma Science and Technology, 2019, 21(7): 74011-074011. DOI: 10.1088/2058-6272/ab024d
Citation: Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Fei MA (马飞), Zhengwei XING (邢政伟), Zheng LIU (刘征), Guofeng LI (李国锋). Direct impact characteristics of magnesite fragmentation by pulsed discharge in water[J]. Plasma Science and Technology, 2019, 21(7): 74011-074011. DOI: 10.1088/2058-6272/ab024d

Direct impact characteristics of magnesite fragmentation by pulsed discharge in water

Funds: This work is supported by National Natural Science Foundation of China (No. 51607023).
More Information
  • Received Date: November 12, 2018
  • To clarify direct impact characteristics (pressure and position) of middle-grade magnesite fragmentation by pulsed discharge in water, this work uses pressure film to accomplish passive measurement through pulsed discharge experiment and obtain the pressure. The impact position is determined by image analysis of fragmentation product morphology, crack edge and discharge channel. Then, pressure load on magnesite surface is numerically analyzed based on the measured pressure obtained from the film. Results indicate that, at 10 mm discharge gap, the impact pressure increases with the discharge voltage, and the discharge voltage to disintegrate magnesite is −40 kV. The impact position is normally in the boundary among different mineral components. Simulation analysis indicates that, the pressure load applied directly on magnesite surface is approximately 142.5 MPa at −40 kV and greater than the compressive strength of magnesite, thus leading to the fragmentation.
  • [1]
    Santana A N and Peres A E C 2001 Miner. Eng. 14 107
    [2]
    Andres U 2010 Int. J. Miner. Process. 97 31
    [3]
    Woo M A et al 2017 Proc. Eng. 207 311
    [4]
    Wang H J et al 2017 Plasma Sci. Technol. 19 015504
    [5]
    Shang K F et al 2017 Plasma Sci. Technol. 19 064017
    [6]
    Andres U 1995 Miner. Process. Extr. Metall. Rev. 14 87
    [7]
    Razavian S M, Rezai B and Irannajad M 2014 Adv. Powder Technol. 25 1672
    [8]
    Wang E, Shi F N and Manlapig E 2012 Int. J. Miner. Process. 112-113 30
    [9]
    Wang E, Shi F N and Manlapig E 2012 Miner. Eng. 27-28 28
    [10]
    Amoussou R I H D T et al 2015 Int. J. Geomate 9 1403
    [11]
    Inoue S et al 2012 Acta Phys. Pol. A 115 1107
    [12]
    Duan C L et al 2015 Miner. Eng. 70 170
    [13]
    Zhao Y M et al 2015 Powder Technol. 269 219
    [14]
    Cao Y et al 2013 J. Phys. Conf. Series 418 012127
    [15]
    Stelmashuk V 2014 Phys. Plasmas 21 010703
    [16]
    Claverie A et al 2014 Rev. Sci. Instrum. 85 063701
    [17]
    Chen W et al 2014 Heat Mass Transfer 50 673
    [18]
    Lu X P et al 2001 Explos. Shock Waves 21 282 (in Chinese)
    [19]
    Lu X P 2007 J. Appl. Phys. 102 063302
    [20]
    Li X D et al 2016 Phys. Plasmas 23 103104
    [21]
    Liu S W et al 2017 Proc. CSEE 37 2807 (in Chinese)
    [22]
    Liu Q et al 2007 High Volt. Eng. 33 59 (in Chinese)
    [23]
    Fujita H et al 2014 J. Appl. Phys. 116 213301
    [24]
    Lesaint O 2016 J. Phys. D: Appl. Phys. 49 144001
    [25]
    Sun B 2013 Discharge Plasma in Liquid and its Applications (Beijing: Science Press) (in Chinese)
    [26]
    Hwang J G et al 2009 Modeling streamers in transformer oil: the transitional fast 3rd mode streamer Proc. 2009 IEEE 9th Int. Conf. on the Properties and Applications of Dielectric Materials (Harbin China) pp 573-8
    [27]
    Zheng D C et al 2018 Electr. Mach. Control 22 51 (in Chinese)
    [28]
    Kim H et al Reappraisal of pressure distribution induced by ice-structure interaction using high-precision pressure measurement film Int. Conf. and Exhibition of Performance of Ships and Structures in Ice (Banff Canada) pp 191-9 (https://fujifilm.com/products/prescale/prescalefilm/ #features)
    [29]
    GB/T 50266-2013 2013 Standard for Test Methods of Engineering Rock Mass (Beijing: China Planning Press) (in Chinese)
    [30]
    Andres U, Timoshkin I and Soloviev M 2001 Miner. Process. Extr. Metall. 110 149
    [31]
    Leckie F A and Bello D J 2009 Strength and Stiffness Of Engineering Systems (New York: Springer) (https://doi. org/10.1007/978-0-387-49474-6)
    [32]
    Beer F P et al 1992 Mechanics of Materials (New York: McGraw-Hill)
    [33]
    Liu Y et al 2016 Trans. China Electrotech. Soc. 31 71 (in Chinese)
    [34]
    Bluhm H et al 2000 IEEE Trans. Dielectr. Electr. Insul. 7 625
  • Related Articles

    [1]Shijie HUANG, Yi LIU, Yong ZHAO, Youlai XU, Fuchang LIN, Hua LI, Qin ZHANG, Liuxia LI. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25(6): 065502. DOI: 10.1088/2058-6272/acb136
    [2]Qi LIU (刘祺), Lei YANG (杨磊), Yuping HUANG (黄玉平), Xu ZHAO (赵絮), Zaiping ZHENG (郑再平). PIC simulation of plasma properties in the discharge channel of a pulsed plasma thruster with flared electrodes[J]. Plasma Science and Technology, 2019, 21(7): 74005-074005. DOI: 10.1088/2058-6272/aaff2e
    [3]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [4]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [5]Huijuan WANG (王慧娟), Guangshun ZHOU (周广顺), He GUO (郭贺), Cong GENG (耿聪). Kinetic analysis of soil contained pyrene oxidation by a pulsed discharge plasma process[J]. Plasma Science and Technology, 2017, 19(1): 15504-015504. DOI: 10.1088/1009-0630/19/1/015504
    [6]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [7]JIA Shenli (贾申利), LI Rui (李瑞), LIU Jianjun (刘建军), LI Xingwen (李兴文), et al.. The Plasma Channel Evolution Characteristics of Pulsed Flashlamps Working in an Array[J]. Plasma Science and Technology, 2013, 15(7): 640-643. DOI: 10.1088/1009-0630/15/7/07
    [8]U. N. PAL, Pooja GULATI, Ram PRAKASH, Mahesh KUMAR, V. SRIVASTAVA, S. KONAR. Analysis of Power in an Argon Filled Pulsed Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(7): 635-639. DOI: 10.1088/1009-0630/15/7/06
    [9]LI Chunzao(李春早), LIU Shaobin(刘少斌), BIAN Borui(卞博锐), DAI Zhaoyang(戴钊阳), ZHANG Xueyong(张学勇). Theoretical Analysis on Propagation of Electromagnetic Wave in Preformed Narrow Plasma Channel[J]. Plasma Science and Technology, 2012, 14(8): 702-707. DOI: 10.1088/1009-0630/14/8/04
    [10]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08
  • Cited by

    Periodical cited type(14)

    1. Wen, Z., Wang, Z., Jiang, X. et al. Effects of Preionization Assembly Structural Parameters on Triggering Performance of Multigap Gas Switch Gaps. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3541590
    2. Zhai, R., Yin, J., Hu, Y. et al. A 200 kV Trigger Generator Based on Pseudospark Switch and Pre-Ionized Peaking Switch. Lecture Notes in Electrical Engineering, 2025. DOI:10.1007/978-981-97-8780-7_54
    3. Zhai, R., Yin, J., Hu, Y. et al. Design and investigation of a capacitance-coupling pre-ionized sharpening switch. Review of Scientific Instruments, 2024, 95(2): 023507. DOI:10.1063/5.0185120
    4. Zhai, R., Zhang, T., Yin, J. et al. A Compact UV-Illuminated Three-Electrode Field-Distortion Gas Switch With Sub-Nanosecond Jitter. IEEE Transactions on Plasma Science, 2024, 52(5): 1810-1814. DOI:10.1109/TPS.2024.3414864
    5. Kumar, G.V., Verma, R., Singh, G. et al. An experimental and numerical study: to investigate the switching characteristics of a field-distortion sparkgap switch in various SF6 admixtures. Engineering Research Express, 2023, 5(4): 045079. DOI:10.1088/2631-8695/ad0fc2
    6. Wen, Z., Wang, Z., Liu, Y. et al. Study on Multichannel Discharge Characteristics of Multigap Gas Switch Gaps. IEEE Transactions on Plasma Science, 2023, 51(11): 3348-3357. DOI:10.1109/TPS.2023.3328212
    7. Wen, Z., Jiang, M., Wang, Z. et al. Numerical Investigation of Runaway Electrons during the Breakdown of Homogeneous Electric Field Air Gaps under Nanosecond Pulse Voltage. IEEE Transactions on Plasma Science, 2023, 51(8): 2124-2133. DOI:10.1109/TPS.2023.3289993
    8. Yang, M., Di, H., Qu, B. et al. Design of a Small-Scale Laser-Triggered Pseudo-Spark Switch. 2023. DOI:10.1109/ICEMCE60359.2023.10490682
    9. Dong, B., Tao, L., Li, Z. et al. A Gas Gap Switch Scheme for Commutation Branch of DC Circuit Breakers and Its Induced Breakdown Characteristics | [机械式直流断路器换流支路用气体间隙开关方案及其诱导击穿特性]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(12): 4863-4872. DOI:10.13336/j.1003-6520.hve.20220474
    10. Zeng, F., Li, S., Cai, H. et al. Investigation on the electrode surface roughness effects on a repetitive self-breakdown gas switch. Plasma Science and Technology, 2022, 24(6): 065506. DOI:10.1088/2058-6272/ac5ffb
    11. Dong, B., Zhang, Z., Xiang, N. et al. Study on Triggering Characteristics and Induced Breakdown Rules of SF Gap Switch Plasma Jets at Extremely Low Working Voltage. IEEE Transactions on Plasma Science, 2022, 50(4): 873-882. DOI:10.1109/TPS.2022.3155565
    12. Cheng, L., Xiang, N., Li, K. et al. Reliability improvement of gas discharge tube by suppressing the formation of short-circuit pathways. Plasma Science and Technology, 2022, 24(3): 035501. DOI:10.1088/2058-6272/ac479c
    13. Dong, B., Zhang, Z., Li, Z. et al. Induced Breakdown Law of Plasma Jet-triggered SF6 Gap Switch at Very Low Operating Coefficient | [极低工作系数下SF6间隙开关喷射等离子体诱导击穿作用规律]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(1): 348-357. DOI:10.13336/j.1003-6520.hve.20211321
    14. Jiang, H., Jiang, X., Sun, F. et al. Design and Experiment Analysis of a Low Inductance Three-Electrode Field-Distortion Gas Switch. IEEE Transactions on Plasma Science, 2019, 47(8): 4114-4120. DOI:10.1109/TPS.2019.2926853

    Other cited types(0)

Catalog

    Article views (214) PDF downloads (955) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return